PHARMACOGENETICS OF BISPHOSPHONATES IN OSTEOPOROSIS

DOI: https://doi.org/10.29296/24999490-2020-03-01

B.I. Yalaev(1), A.V. Tyurin(2), R.Z. Nurlygayanov(3), R.I. Khusainova(1) 1-Institute of Biochemistry and Genetics of the Ufa Federal Research Centre of the Russian Academy of Sciences, October Avenue, 71, Ufa, 450054, Russian Federation; 2-Bashkir State Medical University, Lenina street, 3, 450000, Russian Federation; 3-City Clinical Hospital, Lesnoy proezd, 3, Ufa, 450071, Russian Federation E-mail: [email protected]

Bisphosphonates (BP) is – a class of drugs that exhibit high inhibitory activity to osteoclasts. BFs are the most effective drugs recommended for the treatment of osteoporosis (OP), which is one of the common diseases of bone tissue, when the risk of bone fracture is sharply increased either due to a decrease in the bone mineral density (BMD) or violation of its architectonics. However, there is growing evidence that the effectiveness of the use of BF does not demonstrate the expected results of treatment in a certain proportion of patients. In addition, it is difficult to predict the adverse responses of the body to these drugs based on the individual genetic profile of the patient, since significant differences in the results of global epidemiological and population studies are shown. Therefore, the systematization of research data in this area is relevant. The article will both describe the current state of the issue of the use of bisphosphonates in modern practice of treatment of OP, and summarize the current data on the pharmacogenetics of bisphosphonates.
Keywords: 
bisphosphonates, pharmacogenetics, aminobisphosphonates, fractures, osteoporosis

Список литературы: 
  1. Rinaldo Florencio-Silva, Gisela Rodrigues da Silva Sasso, Estela Sasso-Cerri, Simoes M.J., Cerri P.S. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells. BioMed Research International. 2015; 421746. https://doi.org/10.1155/2015/421746
  2. Meng-Xia Ji and Qi Yu. Primary osteopo- rosis in postmenopausal women. Chronic Diseases and Translational Medicine. 2015; 1 (1): 9–13. https://doi.org/10.1016/j. cdtm.2015.02.006
  3. Ralston S.H., Uitterlinden A.G. Genetic of osteoporosis. Endocrine Reviews. 2010; 31 (5): 629–62. https://doi.org/10.1210/er.2009-0044
  4. Kiel D.P., Demissie S., Dupuis J., Lunetta K.L., Murabito J.M., Karasik D. Genome-wide association with bone mass and geometry in the Framingham Heart Study. BMC Medi- cal Genetics. 2007; 8 (1): 14. https://doi. org/10.1186/1471-2350-8-S1-S14
  5. Styrkarsdottir U., Halldorsson B.V., Gretars- dottir S., Gudbjartsson D.F., Walters G.B., In- gvarsson T., Jonsdottir T., Saemundsdottir J., Center J.R., Nguyen T.V., Bagger Y., Gulcher J.R., Eisman J.A., Christiansen C., Sigurdsson G., Kong A., Thorsteinsdottir U., Stefansson K. Multiple genetic loci for bone mineral density and fractures. The New England J. of Medicine. 2008; 358 (22): 2355–65. https://doi.org/10.1056/NEJMoa0801197
  6. Richards J.B., Rivadeneira F., Inouye M., Pastinen T.M., Soranzo N., Wilson S.G., An- drew T., Falchi M., Gwilliam R., Ahmadi K.R., Valdes A.M., Arp P., Whittaker P., Verlaan D.J., Jhamai M., Kumanduri V., Moorhouse M., van Meurs J.B., Hofman A., Pols H.A., Hart D., Zhai G., Kato B.S., Mullin B.H., Zhang F., Deloukas P., Uitterlinden A.G., Spector T.D. Bone mineral density, osteoporosis, and osteoporotic fracture: a genome-wide association study. Lancet. 2008; 371 (9623): 1505–12. https://doi.org/10.1016/S0140- 6736(08)60599-1
  7. Rivadeneria F., Styrkarsdottir U., Estrada K., Halldorsson B.V., Hsu Y.H., Richards J.B., Zillik- ens M.C., Kavvoura F.K., Amin N., Aulchen- ko Y.S., Cupples L.A., Deloukas P., Demissie S., Grundberg E., Hofman A., Kong A., Karasik D., van Meurs J.B., Oostra B., Past- inen T., Pols H.A., Sigurdsson G., Soranzo N., Thorleifsson G., Thorsteinsdottir U., Williams F.M., Wilson S.G., Zhou Y., Ralston S.H., van Duijn C.M., Spector T., Kiel D.P., Stefansson K., Ioannidis J.P., Uitterlinden A.G. Genetic Factors for Osteoporosis (GEFOS) Consor- tium. Twenty bone-mineral-density loci identified by large-scale meta-analysis of genome-wide association studies. Nature Genetics. 2009; 41 (11): 1199–206. https:// doi.org/10.1038/ng.446
  8. Zheng H.F., Spector T.D., Richards J.B. In- sights into the genetics of osteoporosis from recent genome-wide association studies. Expert Reviews in Molecular Medicine. 2011; 13: e28. https://doi.org/10.1017/ S1462399411001980
  9. Karasik D., Rivadeneira F., Johnson M.L. The genetics of bone mass and susceptibility to bone diseases. Nature Reviews Rheuma- tology. 2016. 12 (6): 323–34. https://doi. org/10.1038/nrrheum.2016.48
  10. Makovey J., Nguyen T.V., Naganath V., Wark J.D., Sambrook P.N. Genetic effects on bone loss in peri- and postmenopausal women: a longitudinal twin study. J. of Bone and Mineral Research. 2007; 22 (11): 1773– 80. https://doi.org/10.1359/jbmr.070708
  11. Howard G.M., Nguyen T.V., Harris M., Kelly P.J., Eisman J.A. Genetic and environ- mental contributions to the association between quantitative ultrasound and bone mineral density measurements: twin study. Journal of Bone and Mineral Research. 1998; 13 (8): 1318–27. https://doi. org/10.1359/jbmr.1998.13.8.1318
  12. Husainova R.I., Husnutdinova E.K. Geneti- ka osteoporoza. Ufa: Gilem, 2015; 392. [Khusainova R.I., Khusnutdinova Eh.K. Genetics of osteoporosis. Ufa: Gilem, 2015; 392 (in Russian)]
  13. Khosla S., Hofbauer L.C. Osteoporosis treatment: recent developments and ongoing challenges. Lancet Diabetes Endocrinol. 2017; 5 (11): 898–907. https:// doi.org/10.1016/S2213-8587(17)30188-2
  14. Homenko A.I., Lobko S.S. Bisfosfonaty v klinike lechenija osteoporoza. Meditsinskie novosti. 2014; 7: 27–31. [Homenko A.I., Lobko S.S. Bisphosphonates in the treatment for osteoporosis. Medicin- skie Novosti, 2014; 7: 27–31 (in Russian)]
  15. Skripnikova I.A., Kosmatova O.V., Abiro- va E.S. Novikov V.E., Murashko L.M. Opyt primenenija preparata Prolia u patsien- tok s postmenopauzal'nym osteoporozom v klinicheskoj praktike. Terapevticheskij arhiv. 2017; 89 (12–2): 190–6. [Skripnikova I.A., Kosmatova O.V., Abirova E.S., Novikov V.E., Murashko L.M. Experience in using Prolia in patients with postmenopausal osteoporosis in clinical practice. Terapevticheskij arhiv 2017; 89 (12–2): 190–6 (in Russian)]
  16. Marie P.J. Strontium ranelate: a dual mode of action rebalancing bone turnover in favour of bone formation. Current Opinion in Rheumatology. 2006; 18 (1): S11e5.
  17. Lesnjak O.M., Toroptsova N.V. Diagnostika, lechenie i profilaktika osteoporoza v obschej vrachebnoj praktike. Rossijskij semejnyj vrach. 2014; 18 (4): 4–17. [Lesnyak O.M., Toropcova N.V. Diagnosis, treatment and prevention of osteoporosis in general practice clinical guidelines. Rossijskij semejnyj vrach 2014; 18 (4): 4–17 (in Russian)]
  18. Beljaeva E.A. Ratsional'nyj podhod k vyboru farmakoterapii pri osteoporoze i komorbidnyh zabolevanijah. Vestnik novyh meditsinskih tehnologij. 2012; 1: 1–9. [Belyaeva E.A. The rational approach to choice of pharmacotherapy at the osteoporosis and the comorbide diseases. Vestnik novyh medicinskih tekhnologij. 2012; 1: 1–9 (in Russian)]
  19. Benevolenskaja L.I., Lesnjak O.M. Kli- nicheskie rekomendatsii. Osteoporoz. Diagnostika, profilaktika i lechenie. M.: GEOTAR-Media, 2005; 176. [Benevolenskaya L.I. Lesnyak O.M. Clinical recommendations. Osteoporosis. Diagno- sis, prevention and treatment. M.: GEOTAR- Media, 2005; 175 (in Russian)]
  20. Chesnut C.H., Silverman S., Andriano K., Genant H., Gimona A., Harris S., Kiel D., LeBoff M., Maricic M., Miller P., Moniz C., Peacock M., Richardson P., Watts N., Baylink D. A randomized trial of nasalspray salmon calcitonin in postmenopausal women with established osteoporosis: the prevent recur- rence of osteoporotic fractures study. The Am. J. of Medicine. 2000; 350: 459–468. htt- ps://doi.org/10.1016/s0002-9343(00)00490-3
  21. Mc Clung M.R., Wagman R.B., Miller P.D., Wang A., Lewiecki E.M. Observations following discontinuation of long-term denosumab therapy. Osteoporosis Inter- national. 2017; 28 (5): 1723–32. https://doi. org/10.1007/s00198-017-3919-1
  22. Blessing A., Isiaka A. and Patricia P. Design and Biological Evaluation of Delivery Systems Containing Bisphosphonates. Pharmaceutics. 2017; 9 (1): 2. https://doi. org/10.3390/pharmaceutics9010002
  23. Kavitha Ganesan, Douglas Roane. Bispho- sphonate. Treasure Island (FL): Stat Pearls Publishing. 2019.
  24. Kristie N.T., Janette D.L., Chew K.V.W. Os- teoporosis: A Review of Treatment Options. P&T. 2018; 43 (2): 92–104.
  25. Buhaescu I., Izzedine H. Mevalonate path- way: a review of clinical and therapeutical implications. Clinical Biochemistry. 2007; 40 (9–10): 575–84. https://doi.org/10.1016/j. clinbiochem.2007.03.016
  26. Monahova A.I., Egorova E.V., Ljalina V.V., Storozhakov G.I. Farmakogenetika bisfosfonatov v lechenii postmenopau- zal'nogo osteoporoza. Obzor literatu- ry. Lechebnoe delo. 2013; 3: 53–8. [Monahova A.I., Egorova E.V., Lyalina V.V., Storozhakov G.I. Pharmacogenetics of Bis- phosphonates in Postmenopausal Women with Osteoporosis. Literature Review. 2013; 3: 53–8 (in Russian)]
  27. John P.B., Lawrence G.R. and John T.M. Principles of Bone Biology. San Diego: Aca- demic Press. 2008; 1943–72.
  28. Black D.M., Thompson D.E., Bauer D.C., Ensrud K., Musliner T., Hochberg M.C., Nevitt M.C., Suryawanshi S., Cummings S.R. Fracture risk reduction with alendronate in women with osteoporosis: the Fracture Intervention Trial. FIT Research Group. The J. of Clinical Endocrinology & Metabo- lism. 2000; 85 (11): 4118–24. https://doi. org/10.1210/jcem.85.11.6953
  29. Black D.M, Reid I.R., Boonen S. et al. The effect of 3 versus 6 years of zoledronic acid treatment of osteoporosis: a randomized extension to the HORIZON-Pivotal Fracture Trial (PFT). Journal: Internist (Berl). 2012; 27 (2): 243–54. https://doi.org/10.1002/ jbmr.1542
  30. Marini F., Brandi M.L. Pharmacogenetics of osteoporosis. Best Practice & Research Clinical Endocrinology & Metabolism. 2014; 28 (6): 783–93. https://doi.org/10.1016/j. beem.2014.07.004
  31. Palomba S., Numis F.G., Mossetti G., Rendi- na D., Vuotto P., Russo T., Zullo F., Nappi C., Nunziata V. Raloxifene administration in post-menopausal women with osteoporo- sis: effect of different BsmI vitamin D recep- tor genotypes. Human Reproduction. 2003; 18 (1): 192–8. https://doi.org/10.1093/hum- rep/deg031
  32. Palomba S., Orio F.J., Russo T., Falbo A., Tolino A., Manguso F., Nunziata V., Mastran- tonio P., Lombardi G., Zullo F. BsmI vitamin D receptor genotypes influence the efficacy of antiresorptive treatments in postmeno- pausal osteoporotic women. A 1-year multicenter, randomized and controlled trial. Osteoporosis International. 2005; 16 (8): 943–52. https://doi.org/10.1007/s00198- 004-1800-5
  33. Marc J., Prezelj J., Komel R., Kocijan- cic. A. VDR genotype and response to etidronate therapy in late postmenopausal women. Osteoporosis International. 1999; 10 (4): 303–6. https://doi.org/10.1007/ s001980050231
  34. Mossetti G., Gennari L., Rendina D. Vitamin D receptor gene polymorphisms predict acquired resistance to clodronate treat- ment in patients with Paget’s disease of bone. Calcified Tissue International. 2008; 83 (6): 414–24. https://doi.org/10.1007/ s00223-008-9193-7
  35. Corral-Gudino L., del Pino-Montes J., Garcia-Aparicio J. -511 C/T IL1B gene polymorphism is associated to resistance to bisphosphonates treatment in Paget disease of bone. Bone. 2006; 38 (4): 589–94. https://doi.org/10.1016/j.bone.2005.09.010
  36. Valeria C., Giusy R., Graziamaria C., Giuseppe T., Vittorio S., Walter F., Nicola F., Michela G.,Valeria D’ Argenio, Nicola M., Amelia F. A Polymorphism at the Translation Start Site of the Vitamin D Receptor Gene Is Associated with the Response to Anti- Osteoporotic Therapy in Postmenopausal Women from Southern Italy. International J. of Molecular Sciences. 2015; 16 (3): 5452– 66. https://doi.org/10.3390/ijms16035452
  37. Krylov M.Ju., Nikitinskaja O.A., Sa- markina E.Ju., Demin N.V., Toroptsova N.V. Poisk geneticheskih markerov, opredeljajuschih effektivnost' terapii bisfosfonatami u rossijskih zhenschin s postmenopauzal'nym osteoporozom: pilotnoe issledovanie. Nauchno-prakti- cheskaja revmatologija. 2016; 54 (4): 412–7. [Krylov M.Yu., Nikitinskaya O.A., Samarkina E.Yu., Demin N.V., Toroptsova N.V. earch for genetic markers determining the ef- ficiency of therapy with bisphosphonates in Russian women with postmenopausal osteoporosis: A pilot study. Nauchno- prakticheskaya revmatologiya 2016; 54 (4): 412–7 (in Russian)]
  38. Qureshi A.M., Herd R.J., Blake G.M., Fogel- man I., Ralston H. COLIA1 Sp1 polymor- phism predicts response of femoral neck bone density to cyclical etidronate thera- py. Calcified Tissue International. 2002; 70 (3): 158–63. https://doi.org/10.1007/s00223- 001-1035-9
  39. Meyer S., Haist M., Schaefer S., Ivan D., Ittner J.R., Nawroth P.P., Plockinger U., Stalla G.K., Tuschy U., Weber M.M., Weise A., Pfutzner A., Habbe N., Kann P.H. Associa- tion of COLIA1 Sp1 polymorphism with the effect of subcutaneously injected recombinant hGH in GH-deficient adults. Pharmacogenomics. 2008; 9 (8): 1017–26. https://doi.org/10.2217/14622416.9.8.1017
  40. Marini F., Falchetti A., Silvestri S., Bag- ger Y., Luzi E., Tanini A., Christiansen C., Brandi M.L. Modulatory effect of farnesyl pyrophosphate synthase (FDPS) rs2297480 polymorphism on the response to long- term amino-bisphosphonate treat- ment in postmenopausal osteoporosis. Current Medical Research and Opin- ion. 2008; 24 (9): 2609–15. https://doi. org/10.1185/03007990802352894
  41. Choi H.J., Choi J.Y., Cho S.W., Kang D., Han K.O., Kim S.W., Kim S.Y., Chung Y.S., Shin C.S. Genetic polymorphism of geranylgeranyl diphosphate synthase (GGSP1) predicts bone density response to bisphosphonate therapy in Korean women. Yonsei Med. J. 2010; 51 (2): 231–8. https://doi.org/10.3349/ ymj.2010.51.2.231
  42. Liu Y., Liu H., Li M., Zhou P., Xing X., Xia W., Zhang Z., Liao E., Chen D., Liu J., Tao T., Wu W., Xu L. Association of farnesyl diphosphate synthase polymorphisms and response to alendronate treatment in Chinese postmenopausal women with osteoporosis. Chinese Med. J. 2014; 127 (4): 662–8. https://doi.org/10.3760/ cma.j.issn.0366-6999.20132382
  43. Songpatanasilp T., Chanprasertyothin S. Effects of differences in polymorphism of gene encoding enzyme farnesyl diphos- phate synthase (FDPS), rs2297480, on bone mineral density and biochemical markers of bone turnover in Thai postmenopausal women. J. of the Medical Association of Thailand. 2011; 94 (5): 38–46.
  44. Francisco-Javier Rodriguez-Lozano and Ricardo-Elias Onate-Sanchez. Treatment of osteonecrosis of the jaw related to bispho- sphonates and other antiresorptive agents. Med Oral Patol Oral Cir Bucal. 2016; 21 (5): 595–600. https://doi.org/10.4317/me- doral.20980
  45. Hiromitsu Kishimoto, Kazuma Noguchi, and Kazuki Takaoka. Novel insight into the management of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Japanese Dental Science Review. 2019; 55 (1): 95–102. https://doi.org/10.1016/j.jdsr.2018.09.002
  46. Di Martino M.T., Arbitrio M., Guzzi P.H., Ema- nuela L., Francesco B., Eugenio P., Tullia P., Iole C., Teresa C., Marco R., Pierangelo V., Mario C., Pierosandro T., Pierfrancesco T. A peroxi- some proliferator-activated receptor gam- ma (PPARG) polymorphism is associated with zoledronic acid-related osteonecrosis of the jaw in multiple myeloma patients: Analy- sis by DMET microarray profiling. British J. of Haematology. 2011; 154 (4): 529–33. https:// doi.org/10.1111/j.1365-2141.2011.08622.x
  47. Katz J., Gong Y., Salmasinia D., Hou W., Bur- kley B., Ferreira P., Casanova O., Langaee T.Y., Moreb J.S. Genetic polymorphisms and other risk factors associated with bisphos- phonate induced osteonecrosis of the jaw. International J. of Oral and Maxillofacial Surgery. 2011; 40 (6): 605–11. https://doi. org/10.1016/j.ijom.2011.02.002
  48. Sarasquete M.E., Garcia-Sanz R., Marin L., Alcoceba M., Chillon M.C., Balanzategui A., Santamaria C., Rosinol L, de la Rubia J., Hernandez M.T., Garcia-Navarro I., Lahuerta J.J., Gonzalez M., San Miguel J.F. Bisphosphonate-related osteonecrosis of the jaw is associated with polymor- phisms of the cytochrome P450 CYP2C8 in multiple myeloma: a genome-wide single nucleotide polymorphism analysis. Blood. 2008; 112 (7): 2709–12. https://doi. org/10.1182/blood-2008-04-147884
  49. Nicoletti P., Cartsos V.M., Palaska P.K., Shen Y., Floratos A., Zavras A. Genome wide pharmacogenetics of bisphosphonate- induced osteonecrosis of the jaw: the role of RBMS3. Oncologist. 2012; 17 (2): 279–87. https://doi.org/10.1634/theoncolo- gist.2011-0202
  50. Hanh H.N., Denise M. van de Laarschot, Annemieke J.M.H. Verkerk, Frances M., M. Carola Zillikens, Peter R. Ebeling Genetic Risk Factors for Atypical Femoral Fractures (AFFs): A Systematic Review. JBMR Plus. 2018; 2 (1): 1–11