ANTIHYPOXIC ACTIVITY OF VARIOUS ETHYLMETHYLHYDROXYPYRIDINE SALTS

DOI: https://doi.org/10.29296/24999490-2020-04-05

D.Yu. Ivkin(1), D.S. Sukhanov(1), G.A. Plisko(1), A. S. Ivkina(1), M.V. Krasnova1, I.A. Titovich(1), E.D. Semivelichenko(1), I.L. Stepanova(1), V.P. Il’nickij(1), A.A. Karpov(2), S.V. Okovityi(1), A.V. Karshin(3) 1-St. Petersburg State Chemical Pharmaceutical University, Professor Popov str., b.14, lit. A, St. Petersburg, 197022, Russian Federation; 2-Almazov National Medical Research Centre, Akkuratova str., b.2, St. Petersburg, 197341, Russian Federation; 3-Farmamed LLC, Domostroitel’naya str., b. 16, lit. Е, St. Petersburg, 194292, Russian Federation E-mail: [email protected]

Introduction. The pathological state of hypoxia of the body occurs with an inadequate supply of tissues and organs with oxygen or with a violation of its utilization in the process of biological oxidation. Ethylmethylhydroxypyridine has a multi-component mechanism of action, which mediates its organ protective, antihypoxic, antioxidant, and anti-stress effects, allowing us to consider the drug as an auxiliary therapy for various pathological conditions. The aim of the study. Comparative assessment of the antihypoxic and antioxidant effects of various salts of ethylmethylhydroxypyridine (EMHP): acetylsalicylate, acetyl glutamate, orotate, succinate (Armadine, reproduced Mexidol preparation), salicylate, hydrochloride (methylethylpiridinol chloride) and metabolite of EMHP – Ethylmethylsulfopyridine (EMSP). Methods. Antihypoxic activity of substances in equimolar doses was studied in 320 outbred male mice weighing of 18–20 g, using 4 models of acute hypoxia: normobaric, histotoxic, hemic, hypercapnic. Results. There were confirmed the expressed anti-hypoxic activities of EMHP succinate. The EMHP salicylate was revealed to possess the most pronounced antihypoxic activity. EMSP, which is an active metabolite of EMHP succinate, showed pronounced activity in a model of acute histotoxic hypoxia (protection index = 69), as well as a weakly expressed antihypoxic effect in a model of hemic hypoxia. Conclusion. It is advisable to study the effectiveness of active substances in models of pathologies, based on the typical pathological process of hypoxia (diseases of the cardiovascular and nervous systems, liver), as well as assessing the effect on physical performance.
Keywords: 
ethylmethylhydroxypyridine succinate (Armadine), hypoxia, protection index, ethylmethylhydroxypyridine units

Список литературы: 
  1. Litvitskij P.F. Klinicheskaja patofiziologija: uchebnik. M.: Prakticheskaja meditsina, 2016; 341–58.
  2. [Litvitsky P.F. Clinical pathophysiology: textbook. M.: Practical medicine, 2016; 341–58 (in Russian)]
  3. Goroshko O.A., Kukes V.G., Prokof'ev A.B., Arhipov V.V., Demchenkova E.Ju. Kliniko-farmakologicheskie aspekty primenenija antioksidantnyh lekarstvennyh sredstv. Mezhdunarodnyj zhurnal prikladnyh i fundamental'nyh issledovanij. 2016; 4–5: 905–12.
  4. [Goroshko O.A., Kukes V.G., Prokofiev A.B., Arkhipov V.V., Demchenkova E.Yu. Clinical and pharmacological aspects of the use of antioxidant drugs. International Journal of Applied and Basic Research. 2016; 4–5: 905–12 (in Russian)]
  5. Okovityj S.V., Smirnov A.V. Antigipoksanty. Eksperimental'naja i klinicheskaja farmakologija. 2001; 64 (3): 76–80.
  6. [Okovity S.V., Smirnov A.V. Antihypoxants. Experimental and clinical pharmacology. 2001; 64 (3): 76–80 (in Russian)]
  7. Okovityj S.V., Suhanov D.S., Zaplutanov V.A., Smagina A.N. Antigipoksanty v sovremennoj klinicheskoj praktike. Klinicheskaja meditsina. 2012; 9: 63–8.
  8. [Okovity, S.V., Sukhanov D.S., Zaplutanov V.A., Smagina A.N. Antihypoxants in modern clinical practice. Clinical medicine. 2012; 9: 63–8 (in Russian)]
  9. Okovityj, S.V. Klinicheskaja farmakologija antigipoksantov. Ch.1. «FARMindeks-Praktik». 2004; 6: 30–9.
  10. [Okovity, S.V. Clinical pharmacology of antihypoxants. Ch.1. «PHARMindex-practice». 2004; 6: 30–9 (in Russian)]
  11. Kotljarov A.A., Chibisov S.M., Mosina L.M. Metabolicheskaja terapija emoksipinom i preduktalom u patsientov s zheludochkovymi narushenijami ritma serdtsa. Sovremennye naukoemkie tehnologii. 2007; 10: 1–8.
  12. [Kotlyarov A.A., Chibisov S.M., Mosina L.M. Metabolic therapy using emoxipine and preductal in patients with ventricular heart rhythm disorders. Modern knowledge-based technologies. 2007; 10: 1–8 (in Russian)]
  13. Kukes V.G., Gorbach T.V., Romaschenko O.V., Rumbesht V.V. Energosberegajuschaja aktivnost' antioksidanta etoksidola pri modelirovannoj ishemii miokarda. Lekarstvennye preparaty i ratsional'naja farmakoterapija. 2014; 1: 16–20.
  14. [Kukes V.G., Gorbach T.V., Romashchenko O.V., Rumbest V.V. Energy-saving activity of the antioxidant ethoxidol in simulated myocardial ischemia. Drugs and rational pharmacotherapy. 2014; 1: 16–20 (in Russian)]
  15. Titovich I.A., Bolotova V.Ts. Eksperimental'noe izuchenie antigipoksicheskoj aktivnosti novogo proizvodnogo aminoetanola. Biomeditsina i biomodelirovanie. 2016; 2: 77–83.
  16. [Titovich I.A., Bolotova V.C. Experimental study of the antihypoxic activity of a new aminoethanol derivative. Biomedicine and Biomodeling. 2016; 2: 77–83 (in Russian)]
  17. Metodicheskie rekomendatsii po eksperimental'nomu izucheniju preparatov, predlagaemyh dlja klinicheskogo izuchenija v kachestve antigipoksicheskih sredstv. Pod red. L.D. Luk'janovoj. M., 1990; 18.
  18. [Methodological Recommendations for the Experimental Study of Drugs Proposed for Clinical Study as Antihypoxic Agents under the editorship Lukyanova L.D. M., 1990; 18 (in Russian)]
  19. Metodicheskie rekomendatsii Biomeditsinskoe (doklinicheskoe) izuchenie antigipoksicheskoj aktivnosti lekarstvennyh sredstv pod red. Karkischenko N.N. M., 2017; 98.
  20. [Methodological recommendations for biomedical (preclinical) study of the antihypoxic activity of drugs under the editorship Karkishchenko N.N. M., 2017; 98 (in Russian)]
  21. Rukovodstvo po provedeniju doklinicheskih issledovanij lekarstvennyh sredstv. Chast' pervaja. M.: Grif i K, 2012.
  22. [Guidelines for preclinical drug research. Part one. M.: Griff and K. 2012 (in Russian)]
  23. Rukovodstvo po laboratornym zhivotnym i al'ternativnym modeljam v biomeditsinskih tehnologijah pod red. Karkischenko N.N. i Gracheva S.V. M.: Profil', 2010; 358.
  24. [Guidelines on laboratory animals and alternative models in biomedical technologies under the editorship: Karkishchenko N.N., Gracheva S.V. M.: Profile, 2010; 358 (in Russian)]
  25. Slepneva L.V., Hmylova G.A. Mehanizm povrezhdenija energeticheskogo obmena pri gipoksii i vozmozhnye puti ego korrektsii fumaratsoderzhaschimi rastvorami. Transfuziologija. 2013; 2: 49–65. [Slepneva L.V., Khmylova G.A. Mechanism of damage to energy metabolism in hypoxia and possible ways to correct it with fumarate-containing solutions. Transfusiology. 2013; 2: 49–65 (in Russian)]
  26. Amel D., Sanchez M., Duhamel F. et al. G-protein-coupled receptor 91 and suc-cinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery. Arterioscler Thromb Vasc Biol. 2014; 34 (2): 285–93.
  27. Tretter L., Patocs A., Chinopoulos C. Succinate, an intermediate in metabolism, signal transduction, ROS, hypoxia, and tumorigenesis. BiochimBiophysActa. 2016; 1857 (8):1086–101.
  28. Okovityj S.V., Rad'ko S.V., Shustov E.B. Suktsinatnye retseptory (SUCNR1) kak perspektivnaja mishen' farmakoterapii. Himiko-farmatsevticheskij zhurnal. 2015; 49 (9): 24–8.
  29. [Okovity S.V., Radko S.V., Shustov E.B. Succinate receptors (SUCNR1) as a promising target of pharmacotherapy. Chemical and pharmaceutical journal. 2015; 49 (9): 24–8 (in Russian)]
  30. Hamel D., Sanchez M., Duhamel F. et al. G-protein-coupled receptor 91 and succinate are key contributors in neonatal postcerebral hypoxia-ischemia recovery. Arterioscler Thromb Vasc Biol. 2014; 34 (2): 285–93.
  31. Gilissen J., Jouret F., Pirotte B., Hanson J. Insight into SUCNR1 (GPR91) structure and function. b Pharmacol Ther. 2016; 159: 56–65.