REGULARITIES OF CHANGES IN α1-ANTITRYPSIN LEVEL IN PATIENTS WITH CHRONIC LYMPHOCYTIC LEUKEMIA

DOI: https://doi.org/10.29296/24999490-2020-04-10

O.V. Boiko, D.M. Kozak Astrakhan State Medical University, Bakinskaya Street, 121, Astrakhan, 414000, Russian Federation E-mail: [email protected]

Introduction. The main function of alpha-1 antitrypsin (A1AT) is inhibition of neutrophil elastinase and control over TNFα secretion. Anti-inflammatory properties of A1AT are manifested in leucocyte migration decrease and proliferation of T-lymphocytes through an increase in the amount of cAMP in the cells. Study objective. To examine the level of A1AT in chronic lymphocytic leukemia (CLL) patients at different stages of the progression of the main disease, as well as depending on the type of infectious complications and location of the pathological process. Methods. Data of 177 CLL patients in dynamics were analyzed. Methods for examining etiologic agents of CLL infectious complications were applied according to Order No.535 «On Unification of Microbiological (Bacteriological) Examination Methods, Applied in Treatment and Diagnostic Laboratories of Medical and Preventive Institutions» dated April 22, 1985. ELISA method was applied to identify antibodies to the viruses Varicella zoster, Cytomegalovirus. A1AT concentration also was measured with ELISA method with the use of test systems IDK a1-Antitrypsin Clearance ELISA (Immundiagnostik AG company, Bensheim). Results. The examination of the A1AT concentration mostly showed its moderate increase under bacterial infections. A significant increase in the A1AT content with respect to the normal values was identified under viral and mycotic complications. Significant difference between the serum A1AT level under the treatment of infectious complications and their base values was identified (р
Keywords: 
chronic lymphocytic leukemia, alpha-1 antitrypsin

Список литературы: 
  1. Corley M., Solem A., Phillips G., Lackey L., Ziehr B., Vincent H.A., Mustoe A.M., Ramos S.B.V., Weeks K.M., Moorman N.J., Laederacha A.. An RNA structure-mediated, posttranscriptional model of human α1-antitrypsin expression. Proc Natl Acad Sci USA. 2017; 21: 114–47. https://doi.org/10.1073/pnas.1706539114.
  2. Haq I., Irving J.A., Saleh A.D., Dron L., Regan-Mochrie G.L., Motamedi-Shad N., Hurst J.R., Gooptu B., Lomas D.A. Deficiency Mutations of Alpha-1 Antitrypsin. Effects on Folding, Function, and Polymerization. Am J Respir Cell Mol Biol. 2016; 54 (1): 71–80. https://doi.org/10.1165/rcmb.2015-0154OC
  3. Matamala N., Martinez M.T., Lara B., Pérez L., Vázquez I., Jimenez A., Barquin M., Ferrarotti I., Blanco I., Janciauskiene S., Martinez-Delgado B. Alternative transcripts of the SERPINA1 gene in alpha-1 antitrypsin deficiency. J. Transl Med. 2015; 13: 211. https://doi.org/10.1186/s12967-015-0585-y.
  4. Parr D.G., Lara B. Clinical utility of alpha-1 proteinase inhibitor in the management of adult patients with severe alpha-1 antitrypsin deficiency: a review of the current literature. Drug Des Devel Ther. 2017; 11: 2149–62. https://doi.org/10.2147/DDDT.S105207.
  5. Fregonese L., Stolk J. Hereditary alpha-1-antitrypsin deficiency and its clinical consequences. Orphanet J. Rare Dis. 2008; 3: 16. https://doi.org/10.1186/1750-1172-3-16
  6. Greulich T., Vogelmeier C.F. Alpha-1-antitrypsin deficiency: increasing awareness and improving diagnosis. Ther Adv Respir Dis. 2016; 10 (1): 72–84. https://doi.org/10.1177/1753465815602162.
  7. Rahman M.A., Mitra S., Sarkar A., Wewers M.D. Alpha 1-Antitrypsin Does Not Inhibit Human Monocyte Caspase-1. PLoS One. 2015; 10 (2): e0117330. https://doi.org/10.1371/journal.pone.0117330.
  8. Siebers K., Fink B., Zakrzewicz A., Agné A., Richter K., Konzok S., Hecker A., Zukunft S., Küllmar M., Klein J., McIntosh J.M., Timm Th., Sewald K., Padberg W., Aggarwal N., Chamulitrat W., Santoso S., Xia W., Janciauskiene S., Grau V. Alpha-1 Antitrypsin Inhibits ATP-Mediated Release of Interleukin-1β via CD36 and Nicotinic Acetylcholine Receptors. Front Immunol. 2018; 9: 877. https://doi.org/10.3389/fimmu.2018.00877.
  9. Quinn P.M., Dunne D.W., Moore S.C., Pleass R.J. IgE-tailpiece associates with α1-antitrypsin (A1AT) to protect IgE from proteolysis without compromising its ability to interact with FcεRI. Sci Rep. 2016; 6: 20509. https://doi.org/10.1038/srep20509.
  10. Bojko V.I., Dotsenko Ju.I., Bojko O.V. Ostrofazovye belki v sljune rabochih na predprijatii po pererabotke prirodnogo gaza i kondensata s vysokim soderzhaniem serovodoroda. Klinicheskaja laboratornaja diagnostika. 2011; 6: 18–20.
  11. [Boiko V.I., Docenko Ju.I., Boiko O.V. Acute-phase proteins in the saliva of workers at a natural gas and condensate processing plant with a high hydrogen sulfide content. Klinicheskaja laboratornaja diagnostika. 2011; 6: 18–20 (in Russian)]
  12. Bojko O.V., Terent'ev A.A., Bojko V.I. Molekuljarnye mehanizmy bakterionositel'stva (harakteristika i podrobnyj analiz). Saarbrucken: Palmarium academic publishing. 2012; 175.
  13. [Boiko O.V., Terent’ev A.A., Boiko V.I. Molecular mechanisms of carriage of bacteria (characterization and detailed analysis). Saarbrucken: Palmarium academic publishing. 2012; 175 (in Russian)]
  14. Moxey J.M., Low E.V., Turner A.M. Rare case of eosinophilic granulomatosis with polyangiitis in two patients with α1-antitrypsin deficiency (PiSZ). BMJ Case Rep. 2016; bcr2015214118. https://doi.org/10.1136/bcr-2015-214118.
  15. Ya-Ling Feng, Yong-Xiang Yin, Jian Ding, Hua Yuan, Lan Yang, Jian-Juan Xu, Ling-Qin Hu. Alpha-1-antitrypsin suppresses oxidative stress in preeclampsia by inhibiting the p38MAPK signaling pathway: An in vivo and in vitro study. PLoS One. 2017; 12 (3): e0173711. https://doi.org/10.1371/journal.pone.0173711.
  16. Koulmanda M., Bhasin M., Fan Z., Hanidziar D., Goel N., Putheti P., Movahedi B., Libermann T.A., Strom T.B. Alpha 1-antitrypsin reduces inflammation and enhances mouse pancreatic islet transplant survival. Proc Natl Acad Sci USA. 2012; 109 (38): 15443–8. https://doi.org/10.1073/pnas.1018366109.