BIOFILMS FORMATION AND DEGRADATION: MOLECULAR AND CELLULAR MECHANISMS

DOI: https://doi.org/10.29296/24999490-2020-05-03

T.I. Khomyakova(1), M.N. Tereshin(2), R.S. Esipov(2), A.D. Magomedova(1), G.V. Kozlovskaya(1), Yu.E. Kozlovsky(1), Yu.N. Khomyakov(3) 1-Scientific Research Institute of Human Morphology, Tsyurupy str., 3, Moscow, 117418, Russian Federation; 2-M.M. Shemyakin and Yu. A. Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya str., 16/10, bld. 1, Moscow, 117437, Russian Federation; 3-Anti-Plague control center, Musorgskogo str., 4, Moscow, 127490, Russian Federation E-mail: [email protected]

Communities of microorganisms are a set of species that interact with each other and occupy the same niche where competitive or mutually beneficial relationships can occur. Biofilms are only one of many types of microbial communities, the study of which has become relevant in the last twenty years. A particular problem is the increase of antibiotic resistance of bacteria during their transition from a plankton lifestyle to a biofilm. The purpose of this review is to analyze current trends in the study of the mechanisms of biofilm formation, intercellular interaction in the formation of multicellular bacterial aggregates, primary adhesion, the relationship of bacteria in mature biofilms, the dispersion of them and distribution in the body. Data on the role of quorum sensing, G-proteins, and micro-RNA in the life cycle of biofilms are presented. The main components of the extracellular matrix are described at the molecular level, their production by microorganisms is presented. A separate chapter describes the results of the authors’ research on the development of effective probiotic bacteria capable to form biofilms on the walls of the colon mucosa. There is a proposed method for screening strains of potential probiotics as potential protectors and inhibitors of biofilm formation by competitive interaction with pathogens at the resulting adhesion sites.
Keywords: 
biofilm, probiotics, multicellular bacterial aggregates, extracellular matrix, G-proteins, bacterial microRNAs

Список литературы: 
  1. Das T., Paino D., Manoharan A., Farrell J., Whiteley G., Kriel F.H., Glasbey T., Manos J. Conditions under which glutathione disrupts the biofilms and improves antibiotic efficacy of both ESKAPE and non-ESKAPE species. Front. Microbiol. 2019; 2000 (10): 1–16. https://doi.org/10.3389/fmicb.2019.02000
  2. Jamal M., Ahmad W., Andleeb S., Jalil F., Imran M., Nawaz A. M., Hussain T,, Ali M., Rafiq M., Kamil M.A. Bacterial biofilm and associated infections. J. Chinese Med. Assoc. 2018; 81: 7–11. https://doi.org/10.1016/j.jcma.2017.07.012.
  3. Machado D., Castro J., Palmeira-de-Oliveira A., Martinez-de-Oliveira J., Cerca N. Bacterial vaginosis biofilms: challenges to current therapies and emerging solutions. Front. Microbiol. 2016; 6: 1528. https://doi.org/10.3389/fmicb.2015.01528
  4. Von Rosenvinge E.C., O’May G.A., Macfarlane S., Macfarlane G.T., Shirtliff M.E. Microbial biofilms and gastrointestinal diseases. Pathog Dis. 2013; 67 (1): 25–38. https://doi.org/10.1111/2049-632X.12020.
  5. Vieira Colombo A.P., Magalhães C.B., Hartenbach F.A., Martins do Souto R., Maciel da Silva-Boghossian C. Periodontal-disease-associated biofilm: a reservoir for pathogens of medical importance. Microbial. Pathog. 2016; 94: 27–34. https://doi.org/10.1016/j.micpath.2015.09.009
  6. Delcaru C., Alexandru I., Podgoreanu P., Grosu M., Stavropoulos E., Chifiriuc M. C., Veronica L. Microbial biofilms in urinary tract infections and prostatitis: etiology, pathogenicity, and combating strategies. Pathogens 2016; 5: 65. https://doi.org/10.3390/pathogens5040065
  7. Riquelme S.A., Ahn D., Prince A. Pseudomonas aeruginosa and Klebsiella pneumoniae adaptation to innate immune clearance mechanisms in the lung. J. Innate Immun. 2018; 10 (5–6): 442–54. https://doi.org/10.1159/000487515
  8. Jaggessar A., Shahali H., Mathew A., Yarlagadda P. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnology. 2017; 15 (1): 64. https://doi.org/10.1186/s12951-017-0306-1
  9. Bernard C., Girardot M., Imbert C. Candida albicans interaction with Gram-positive bacteria within interkingdom biofilms. J. Mycol Med. 2019; 2: 100909. https://doi.org/10.1016/j.mycmed.2019.100909. [Epub ahead of print]
  10. Elias S., Banin E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev. 2012; 36 (5): 990–1004. https://doi.org/10.1111/j.1574-6976.2012.00325.x. Epub 2012 Feb 2
  11. O’Brien T.J., Welch M. A continuous-flow model for in vitro cultivation of mixed microbial populations associated with cystic fibrosis airway infections. Front Microbiol. 2019; 22 (10): 2713. https://doi.org/10.3389/fmicb.2019.02713. eCollection 2019.
  12. Speranza B., Corbo M.R., Campaniello D., Altieri C. Sinigaglia M., Bevilacqua A. Biofilm formation by potentially probiotic Saccharomyces cerevisiae strains Food Microbiology. 2020; 87 (103393). https://doi.org/10.1016/j.fm.2019.103393
  13. Matilla M.A., Krell T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev. 2018; 42 (1). https://doi.org/10.1093/femsre/fux052.
  14. Kinosita Y., Kikuchi Y., Mikami N. Unforeseen swimming and gliding mode of an insect gut symbiont, Burkholderia sp. RPE64, with wrapping of the flagella around its cell body. ISME J. 2018; 12: 838–48. https://doi.org/10.1038/s41396-017-0010-z
  15. Be’er A., Ariel G. A statistical physics view of swarming bacteria. Mov Ecol. 2019; 7: 9. Published 2019 Mar 15. https://doi.org/10.1186/s40462-019-0153-9
  16. Rabin N., Zheng Y., Opoku-Temeng C., Du Y., Bonsu E., Sintim H.O. Biofilm formation mechanisms and targets for developing antibiofilm agents Future Med Chem. 2015; 7 (10): 1362.
  17. O’Toole G.A., Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 1998; 30 (2): 295–304.
  18. Colin R., Drescher K., Sourjik V. Chemotactic behaviour of Escherichia coli at high cell density Nat Commun. 2019; 10: 5329. https://doi.org/10.1038/s41467-019-13179-1
  19. Woldemeskel S.A., Goley E.D. Shapeshifting to survive: shape determination and regulation in Caulobacter crescentus. Trends Microbiol. 2017; 25 (8): 673–87. https://doi.org/10.1016/j.tim.2017.03.006. Epub 2017 Mar 27.
  20. Pantaléon V., Monot M., Eckert C., Hoys S., Collignona C. Janoira T. Candela T. A. Clostridium difficile forms variable biofilms on abiotic surface Anaerobe, 2018; 53: 34–7. https://doi.org/10.1016/j.anaerobe.2018.05.006
  21. Qin J., Doyle M.T., Tran E.N.H., Morona R.The virulence domain of Shigella Ics A contains a subregion with specific host cell adhesion function. PLoS One. 2020; 7, 15 (1): e0227425. https://doi.org/10.1371/journal.pone.0227425. eCollection 2020
  22. Satchell K.J.F. Structure and function of MARTX toxins and other large repetitive RTX proteins. Annu Rev Microbiol. 2011; 65: 71–90. https://doi.org/10.1146/annurev-micro-090110-102943
  23. Vance TDR, Guo S, Assaie-Ardakany S, Conroy B, Davies PL. Structure and functional analysis of a bacterial adhesin sugar-binding domain PLoS One. 2019; 14 (7): e0220045. Published 2019. https://doi.org/10.1371/journal.pone.0220045
  24. Schleheck D, Barraud N, Klebensberger J, Webb JS, McDougald D, RiceSA, Kjelleberg S. Pseudomonas aeruginosaPAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoSOne. 2009; 4: e5513. http://dx.doi.org/10.1371/journal.pone.0005513.
  25. Schuett Ch., Doepke H, Grathoff A., Gedde M. Bacterial aggregates in the tentacles of the sea anemone Metridium senile Helgol Mar Res. 2007; 61: 211–6. https://doi.org/10.1007/s10152-007-0069-4123
  26. Melaugh G., Hutchison J., Kragh K.N., Irie Y., Roberts A., Bjarnsholt T. Shaping the growth behaviour of biofilms initiated from bacterial aggregates. PLoS ONE. 2016; 11 (3): e0149683. https://doi.org/10.1371/journal.pone.0149683
  27. Kragh K.N., Hutchison J.B., Melaugh G., Rodesney C. Roberts A.E,. Irie Y., Jensen P.Ø., Diggle S.P .Allen R.J., Gordon V., Bjarnsholt T. Role of multicellular aggregates in biofilm formation. MBio. 2016; 7 (2): e00237. Published 2016 Mar 22. https://doi.org/10.1128/mBio.00237-16
  28. Hengge R., Gründling A., Jenal U., Ryan R., Yildiz F. Bacterial signal transduction by Cyclic Di-GMP and other nucleotide second messengers J. Bacteriol. 2016; 198: 15–26. https://doi.org/10.1128/JB.00331-15.
  29. Bay L., Kragh K.N., Eickhardt S.R., Poulsen S.S., Gjerdrum L.M.R., Ghathian K., Calum H., Ågren M.S., Bjarnsholt T. Bacterial aggregates establish at the edges of acute epidermal wounds Adv wound care (New Rochelle). 2018; 7 (4): 105–13. https://doi.org/10.1089/wound.2017.0770.
  30. Tuson, H.H., Weibel, D.B. Bacteria-surface interactions Soft matter. 2013; 9 (18): 4368–80. https://doi.org/10.1039/C3SM27705D
  31. Singh R., Ray P., Das A. Sharma M. Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J. Med Microbiol. 2009; 58 (Pt 8): 1067–73. https://doi.org/10.1099/jmm.0.009720-0.
  32. Berditsch M., Afonin S., Reuster J., Lux H., Schkolin K., Babii O., Radchenko D.S., Abdullah I., William N., Middel V., Strähle U., Nelson A., Valko K., Ulrich A.S. Supreme activity of gramicidin S against resistant, persistent and biofilm cells of staphylococci and enterococci. Sci Rep. 2019; 9 (1): 17938. https://doi.org/10.1038/s41598-019-54212-z.
  33. Santi L., Beys-da-Silva W.O., Berger M,. Calzolari D., Guimarães J.A., Moresco J.J., Yates J.R. 3rd.Proteomic profile of Cryptococcus neoformans biofilm reveals changes in metabolic processes. J. Proteome Res. 2014; 13 (3): 1545–59. https://doi.org/10.1021/pr401075f. Epub 2014 Jan 27.
  34. Donlan R.M., Costerton J.W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002; 15 (2): 167–93. https://doi.org/10.1128/CMR.15.2.167-193.2002
  35. Keren-Paz A., Kolodkin-Gal I. A brick in the wall: Discovering a novel mineral component of the biofilm extracellular matrix. N. Biotechnol. 2019; 56: 9–15. https://doi.org/10.1016/j.nbt.2019.11.002.
  36. Bales P.M., Renke E.M., May S.L., Shen Y., Nelson D.C. Purification and characterization of biofilm-associated EPS exopolysaccharides from ESKAPE organisms and other pathogens. PLoS One. 2013; 8 (6): e67950. https://doi.org/10.1371/journal.pone.0067950. Print 2013.
  37. Sharma G., Rao S., Bansal A., Dang S., Gupta S., Gabrani R. Pseudomonas aeruginosa biofilm: Potential therapeutic targets. Biologicals. 2014; 42 (1): 1–7.
  38. Al Ahmar R., Kirby B.D., Yu H.D. Pyrimidine biosynthesis regulates small colony variant and mucoidy in Pseudomonas aeruginosa through sigma factor competition. J. Bacteriol. 2018; 201 (1): e00575–18. https://doi.org/10.1128/JB.00575-18.
  39. Arciola C.R., Campoccia D., Ravaioli S., & Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol. 2015; 5: 7. Published online 2015. https://doi.org/10.3389/fcimb.2015.00007
  40. Matsumoto-Nakano M. Role of Streptococcus mutans surface proteins for biofilm formation. Japan Dent Sci Rev. 2017; 54 (1): 22–9. https://doi.org/10.1016/j.jdsr.2017.08.002
  41. Sommer R., Rox K., Wagner S., Hauck D., Henrikus S., Newsad S.,Arnold T., Ryckmans. Th. , Brönstrup M. Imberty A., Varrot A.,Hartmann R., Titz A. Anti-biofilm agents against Pseudomonas aeruginosa: a structure-activity relationship study of C-glycosidic Lecb inhibitors. J. Med Chem. 2019. https://doi.org/10.1021/acs.jmedchem.9b01120.
  42. Ibáñez de Aldecoa A. L., Zafra O., González-Pastor J. E. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front. Microbiol. 2017; 8: 1390. https://doi.org/10.3389/fmicb.2017.01390. eCollection 2017.
  43. Doroshenko N., Tseng B.S., Howlin R.P. Deacon J., Wharton J.A., Thurner P.J., Gilmore B.F., Parsek M.R., Stoodley P. Extracellular DNA impedes the transport of vancomycin in Staphylococcus epidermidis biofilms pre-exposed to sub-inhibitory concentrations of vancomycin Antimicrob. Agents Chemother. 2014; 58 (12): 7273–82.
  44. Cherny K.E., Sauer K. Untethering and degradation of the polysaccharide matrix are essential steps in the dispersion response of Pseudomonas aeruginosa biofilms J. Bacteriol. 2019; JB.00575–19. https://doi.org/10.1128/JB.00575-19.
  45. Ganesh P.S., Vishnupriya S., Vadivelu J., Mariappan V., Vellasamy K.M., Shankar, E.M. Intracellular survival and innate immune evasion of Burkholderia cepacia : improved understanding of quorum sensing controlled virulence factors, biofilm and inhibitors. Microbiol and Immunol. 2020; 64 (2): 87–98. https://doi.org/10.1111/1348-0421.12762. Epub 2020.
  46. Huang J., Shi Y., Zeng G., Gu Y., Chen G., Shi L., Hu Y, Tang B, Zhou, J. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. Chemosphere. 2016; 157: 137–51. https://doi.org/10.1016/j.chemosphere.2016.05.032
  47. Nieto V., Partridge J.D., Severin G., Lai R.-Z., Waters C., Parkinson J.S., Harshey R.M. Under elevated c-di-GMP in E. coli, YcgR alters flagellar motor bias and speed sequentially, with additional negative control of the flagellar regulon via the adaptor protein RssB. J. Bacteriol. 2019; 202 (1): e00578–19. https://doi.org/10.1128/JB.00578-19. Print 2019.
  48. Takeuchi K., Tsuchiya W., Noda N., Suzuki R., Yamazaki, T., & Haas, D. Lon protease negatively affects GacA protein stability and expression of the Gac/Rsm signal transduction pathway in Pseudomonas protegens. Environ Microbiol. 2014; 16 (8): 2538–49. https://doi.org/10.1111/1462-2920.12394
  49. Christiaen S.E.A., O’Connell Motherway M., Bottacini F., Lanigan N., Casey P.G., Huys G., Coenye T. Autoinducer-2 plays a crucial role in gut colonization and probiotic functionality of Bifidobacterium breve UCC2003. PLoS ONE. 2014; 9 (5): e98111. https://doi.org/10.1371/jouRNKl.pone.0098111
  50. Chatterjee M., D’Morris S., Paul V., Warrier S., Vasudevan A.K., Vanuopadath M, Nair SS, Paul-Prasanth B, Mohan CG, Biswas R. Mechanistic understanding of Phenyllactic acid mediated inhibition of quorum sensing and biofilm development in Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2017; 101 (22): 8223–36. https://doi.org/10.1007/s00253-017-8546-4. Epub 2017.