ON THE ROLE OF PCSK9 IN THE DEVELOPMENT OF ATHEROSCLEROSIS: MOLECULAR ASPECTS

DOI: https://doi.org/10.29296/24999490-2021-02-02

A.M. Chaulin(1, 2), D.V. Duplyakov(1, 2) 1-Samara Regional Cardiological Dispensary, Aerodromnaya str, 43, Samara, 443070, Russian Federation; 2-Samara State Medical University, Chapaevskaya St., 89, Samara, 443099, Russian Federation E-mail: alekseymichailovich22976@gmail.com

Due to the discovery of the proprotein convertase subtilisin/kexin type 9 (PCSK9) and the establishment of its role in lipoprotein metabolism, it became possible to deliver new groups of effective drugs for the treatment of dyslipidemia. The main function of PCSK9 is to eliminate low-density lipoprotein receptors leading to the development of hypercholesterolemia – one of the key risk factors for atherosclerosis and cardiovascular diseases. Therefore, inhibition of PCSK9 has become a new strategy for hypolipidemic measures. Monoclonal antibodies (class G immunoglobulins) against PCSK9 – alirocumab and evolocumab are currently approved for the use in clinical practice. At the stage of development and clinical trials, there are many additional groups of drugs acting as inhibition of PCSK9 gene expression, PCSK9 matrix RNA translation, and inhibition of the function of the PCSK9 enzyme. This review examines the role of PCSK9 in the regulation of lipoprotein metabolism and describes in detail the molecular mechanisms for regulating the expression of the gene encoding PCSK9. The main groups of new hypolipidemic anti-PCSK9 drugs are also discussed: monoclonal antibodies against PCSK9, small interfering RNAs, antisense nucleotides, small molecules, and the anti-PCSK9 vaccine
Keywords: 
cardiovascular diseases, atherosclerosis, PCSK9, low-density lipoproteins, monoclonal antibodies, small interfering RNAS, antisense nucleotides, annexin A2, CRISPR/Cas9, vaccine

Список литературы: 
  1. Chaulin A.M., Karsljan L.S., Grigor'eva E.V., Nurbaltaeva D.A., Dupljakov D.V. Kliniko-diagnosticheskaja tsennost' kardiomarkerov v biologicheskih zhidkostjah cheloveka. Kardiologija. 2019; 59 (11): 66–75. DOI: 10.18087/cardio.2019.11.n414. [Chaulin A.M., Karslyan L.S., Grigoriyeva E.V., Nurbaltaeva D.A., Duplyakov D.V. Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids. Kardiologiia. 2019; 59 (11): 66–75. DOI:10.18087/cardio.2019.11.n414 (in Russian)]
  2. Chaulin A.M., Grigor'eva Ju.V., Dupljakov D.V. Komorbidnost' hronicheskoj obstruktivnoj bolezni legkih i serdechno-sosudistyh zabolevanij: obschie faktory, patofiziologicheskie mehanizmy i klinicheskoe znachenie. Klinicheskaja praktika. 2020; 11 (1): 112–21. DOI: 10.17816/clinpract21218. [Chaulin A.M., Karslyan L.S., Duplyakov D.V. Non-coronarogenic causes of increased cardiac troponins in clinical practice. J. of Clinical Practice. 2020; 10 (4): 81–93. DOI: 10.17816/clinpract21218 (in Russian)]
  3. Lutaj Ju.A., Krjuchkova O.N., Itskova E.A., Turna E.Ju. Sovremennye perspektivy uluchshenija kontrolja lipidnogo obmena. Krymskij terapevticheskij zhurnal. 2016; 2 (29): 12–6. [Lutai Y.A., Kryuchkova O.N., Itskova E.A., Turna E.Y. Modern prospects for improving the control of lipid metabolism. Krymskiy terapevticheskiy zhurnal. 2016; 2 (29): 12–6 (in Russian)]
  4. Abifadel M., Varret M., Rabès J.P., Allard D., Ouguerram K., Devillers M., Cruaud C., Benjannet S., Wickham L., Erlich D., Derré A., Villéger L., Farnier M., Beucler I., Bruckert E., Chambaz J., Chanu B., Lecerf J.M., Luc G., Moulin P., Weissenbach J., Prat A., Krempf M., Junien C., Seidah N.G., Boileau C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003; 34 (2): 154–6. DOI: 10.1038/ng1161.
  5. Chaulin A.M., Dupljakov D.V. PCSK-9: sovremennye predstavlenija o biologicheskoj roli i vozmozhnosti ispol'zovanija v kachestve diagnosticheskogo markera serdechno-sosudistyh zabolevanij. Chast' 1. Kardiologija: novosti, mnenija, obuchenie. 2019; 7 (2): 45–57. DOI: 10.24411/2309-1908-2019-12005. [Chaulin A.M., Duplyakov D.V. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 1. Kardiologiya: novosti, mneniya, obuchenie. Cardiology: News, Opinions, Training. 2019; 7 (2): 45–57. DOI: 10.24411/2309-1908-2019-12005 (in Russian)]
  6. Chaulin A.M., Dupljakov D.V. PCSK-9: sovremennye predstavlenija o biologicheskoj roli i vozmozhnosti ispol'zovanija v kachestve diagnosticheskogo markera serdechno-sosudistyh zabolevanij. Chast' 2. Kardiologija: novosti, mnenija, obuchenie. 2019; 7 (4): 24–35. DOI: 10.24411/2309-1908-2019-14004. [Chaulin A.M., Duplyakov D.V. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 2. Kardiologiya: novosti, mneniya, obuchenie. Cardiology: News, Opinions, Training. 2019; 7 (4): 24–35. DOI: 10.24411/2309-1908-2019-14004 (in Russian)]
  7. Norata G.D., Tavori H., Pirillo A., Fazio S., Catapano A.L. Biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. Cardiovasc Res. 2016; 112 (1): 429–42. DOI: 10.1093/cvr/cvw194.
  8. Han B., Eacho P.I., Knierman M.D., Troutt J.S., Konrad R.J., Yu X., Schroeder K.M. Isolation and characterization of the circulating truncated form of PCSK9. J. Lipid Res. 2014; 55 (7): 1505–14. DOI: 10.1194/jlr.M049346.
  9. Averkova A.O. PCSK-9: reguljatsija biologicheskoj aktivnosti i svjaz' s obmenom zhirov i uglevodov. Klinicheskaja praktika. 2017; 17: 70–5. [Averkova A.O. PCSK9: Biological activity regulation and connection with lipid and carbohydrate metabolism. J. of Clinical Practice. 2017; 3 (31): 70–5 (in Russian)]
  10. Nishikido T., Ray K.K. Non-antibody Approaches to Proprotein Convertase Subtilisin Kexin 9 Inhibition: siRNA, Antisense Oligonucleotides, Adnectins, Vaccination, and New Attempts at Small-Molecule Inhibitors Based on New Discoveries. Front Cardiovasc Med. 2019; 5: 199. DOI: 10.3389/fcvm.2018.00199.
  11. Essalmani R., Susan-Resiga D., Chamberland A., Abifadel M., Creemers J.W., Boileau C., Seidah N.G., Prat A. In vivo evidence that furin from hepatocytes inactivates PCSK9. J. Biol. Chem. 2011; 286 (6): 4257–63. DOI: 10.1074/jbc.M110.192104.
  12. Lakoski S.G., Lagace T.A., Cohen J.C., Horton J.D., Hobbs H.H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin Endocrinol Metab. 2009; 94 (7): 2537–43. DOI: 10.1210/jc.2009-0141.
  13. Krysa J.A., Ooi T.C., Proctor S.D., Vine D.F. Nutritional and Lipid Modulation of PCSK9: Effects on Cardiometabolic Risk Factors. J. Nutr. 2017; 147 (4): 473–81. DOI: 10.3945/jn.116.235069.
  14. Persson L., Cao G., Ståhle L., Sjöberg B.G., Troutt J.S., Konrad R.J., Gälman C., Wallén H., Eriksson M., Hafström I., Lind S., Dahlin M., Amark P., Angelin B., Rudling M. Circulating proprotein convertase subtilisin kexin type 9 has a diurnal rhythm synchronous with cholesterol synthesis and is reduced by fasting in humans. Arterioscler Thromb Vasc Biol. 2010; 30 (12): 2666–72. DOI: 10.1161/ATVBAHA.110.214130.
  15. Boyer M., Mitchell P.L., Poirier P., Alméras N., Tremblay A., Bergeron J., Després J.P., Arsenault B.J. Impact of a one-year lifestyle modification program on cholesterol efflux capacities in men with abdominal obesity and dyslipidemia. Am J. Physiol Endocrinol Metab. 2018; 315 (4): 460–8. DOI: 10.1152/ajpendo.00127.2018.
  16. Sahebkar A., Simental-Mendia L.E., Guerrero-Romero F. et al. Effect of statin therapy on plasma proprotein convertase subtilisin kexin 9 (PCSK9) concentrations: a systematic review and meta-analysis of clinical trials. Diabetes Obes. Metab. 2015; 17 (11): 1042–55. DOI: 10.1111/dom.12536
  17. Walley K.R. Role of lipoproteins and proprotein convertase subtilisin/kexin type 9 in endotoxin clearance in sepsis. Curr Opin Crit Care. 2016; 22 (5): 464–9. DOI: 10.1097/MCC.0000000000000351.
  18. Baragetti A., Grejtakova D., Casula M., Olmastroni E., Jotti G.S., Norata G.D., Catapano A.L., Bellosta S. Proprotein Convertase Subtilisin-Kexin type-9 (PCSK9) and triglyceride-rich lipoprotein metabolism: Facts and gaps. Pharmacol Res. 2018; 130: 1–11. DOI: 10.1016/j.phrs.2018.01.025.
  19. Cohen J., Pertsemlidis A., Kotowski I.K., Graham R., Garcia C.K., Hobbs H.H. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005; 37 (2): 161–5. DOI: 10.1038/ng1509.
  20. Brown M.S., Goldstein J.L. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986; 232 (4746): 34–47. DOI: 10.1126/science.3513311.
  21. Leren T.P. Sorting an LDL receptor with bound PCSK9 to intracellular degradation. Atherosclerosis. 2014; 237 (1): 76–81. DOI: 10.1016/j.atherosclerosis.2014.08.038.
  22. Ference B.A., Cannon C.P., Landmesser U., Lüscher T.F., Catapano A.L., Ray K.K. Reduction of low density lipoprotein-cholesterol and cardiovascular events with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors and statins: an analysis of FOURIER, SPIRE, and the Cholesterol Treatment Trialists Collaboration. Eur Heart J. 2018; 39 (27): 2540–5. DOI: 10.1093/eurheartj/ehx450.
  23. Catapano A.L., Papadopoulos N. The safety of therapeutic monoclonal antibodies: implications for cardiovascular disease and targeting the PCSK9 pathway. Atherosclerosis. 2013; 228 (1): 18–28. DOI: 10.1016/j.atherosclerosis.2013.01.044.
  24. Leiter L.A., Teoh H., Kallend D., Wright R.S., Landmesser U., Wijngaard P.L.J., Kastelein J.J.P., Ray K.K. Inclisiran Lowers LDL-C and PCSK9 Irrespective of Diabetes Status: The ORION-1 Randomized Clinical Trial. Diabetes Care. 2019; 42 (1): 173–6. DOI: 10.2337/dc18-1491.
  25. Gupta N., Fisker N., Asselin M.C., Lindholm M., Rosenbohm C., Ørum H., Elmén J., Seidah N.G., Straarup E.M. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One. 2010; 5 (5): e10682. DOI: 10.1371/journal.pone.0010682.
  26. Lipovsek D. Adnectins: engineered target-binding protein therapeutics. Protein Eng Des Sel. 2011; 24 (1–2): 3–9. DOI: 10.1093/protein/gzq097.
  27. Li W., Ward F.R., McClure K.F., Chang S.T., Montabana E., Liras S., Dullea R.G., Cate J.H.D. Structural basis for selective stalling of human ribosome nascent chain complexes by a drug-like molecule. Nat Struct Mol. Biol. 2019; 26 (6): 501–9. DOI: 10.1038/s41594-019-0236-8.
  28. Landlinger C., Pouwer M.G., Juno C., van der Hoorn J.W.A., Pieterman E.J., Jukema J.W., Staffler G., Princen H.M.G., Galabova G. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur Heart J. 2017; 38 (32): 2499–507. DOI: 10.1093/eurheartj/ehx260.
  29. Goldstein J.L., Brown M.S. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009; 29 (4): 431–8. DOI: 10.1161/ATVBAHA.108.179564.
  30. Poirier S., Mayer G., Benjannet S., Bergeron E., Marcinkiewicz J., Nassoury N., Mayer H., Nimpf J., Prat A., Seidah N.G. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol. Chem. 2008; 283 (4): 2363–72. DOI: 10.1074/jbc.M708098200.
  31. Ouguerram K., Chetiveaux M., Zair Y., Costet P., Abifadel M., Varret M., Boileau C., Magot T., Krempf M. Apolipoprotein B100 metabolism in autosomal-dominant hypercholesterolemia related to mutations in PCSK9. Arterioscler Thromb Vasc Biol. 2004; 24 (8): 1448–53. DOI: 10.1161/01.ATV.0000133684.77013.88.
  32. Sun H., Samarghandi A., Zhang N., Yao Z., Xiong M., Teng B.B. Proprotein convertase subtilisin/kexin type 9 interacts with apolipoprotein B and prevents its intracellular degradation, irrespective of the low-density lipoprotein receptor. Arterioscler Thromb Vasc Biol. 2012; 32 (7): 1585–95. DOI: 10.1161/ATVBAHA.112.250043.
  33. Rashid S., Tavori H., Brown P.E., Linton M.F., He J., Giunzioni I., Fazio S. Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent mechanisms. Circulation. 2014; 130 (5): 431–41. DOI: 10.1161/CIRCULATIONAHA.113.006720.
  34. Dubuc G., Chamberland A., Wassef H., Davignon J., Seidah N.G., Bernier L., Prat A. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2004; 24 (8): 1454–9. DOI: 10.1161/01.ATV.0000134621.14315.43.
  35. Bjermo H., Iggman D., Kullberg J., Dahlman I., Johansson L., Persson L., Berglund J., Pulkki K., Basu S., Uusitupa M., Rudling M., Arner P., Cederholm T., Ahlström H., Risérus U. Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am. J. Clin. Nutr. 2012; 95 (5): 1003–12. DOI: 10.3945/ajcn.111.030114.
  36. Galland L. Diet and inflammation. Nutr Clin Pract. 2010; 25 (6): 634–40. DOI: 10.1177/0884533610385703.
  37. Ou J., Tu H., Shan B., Luk A., DeBose-Boyd R.A., Bashmakov Y., Goldstein J.L., Brown M.S. Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proc Natl Acad Sci USA. 2001; 98 (11): 6027–32. DOI: 10.1073/pnas.111138698.
  38. Cao A., Wu M., Li H., Liu J. Janus kinase activation by cytokine oncostatin M decreases PCSK9 expression in liver cells. J. Lipid Res. 2011; 52 (3): 518–30. DOI: 10.1194/jlr.M010603.
  39. Ruscica M., Ricci C., Macchi C., Magni P., Cristofani R., Liu J., Corsini A., Ferri N. Suppressor of Cytokine Signaling-3 (SOCS-3) Induces Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) Expression in Hepatic HepG2 Cell Line. J. Biol. Chem. 2016; 291 (7): 3508–19. DOI: 10.1074/jbc.M115.664706.
  40. Persson L., Gälman C., Angelin B., Rudling M. Importance of proprotein convertase subtilisin/kexin type 9 in the hormonal and dietary regulation of rat liver low-density lipoprotein receptors. Endocrinology. 2009; 150 (3): 1140–6. DOI: 10.1210/en.2008-1281.
  41. Li H., Dong B., Park S.W., Lee H.S., Chen W., Liu J. Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J. Biol. Chem. 2009; 284 (42): 28885–95. DOI: 10.1074/jbc.M109.052407.
  42. Tao R., Xiong X., DePinho R.A., Deng C.X., Dong X.C. FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression. J. Biol. Chem. 2013; 288 (41): 29252–9. DOI: 10.1074/jbc.M113.481473.
  43. Ai D., Chen C., Han S., Ganda A., Murphy A.J., Haeusler R., Thorp E., Accili D., Horton J.D., Tall A.R. Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice. J. Clin. Invest. 2012; 122 (4): 1262–70. DOI: 10.1172/JCI61919.
  44. Li H., Liu J. The novel function of HINFP as a co-activator in sterol-regulated transcription of PCSK9 in HepG2 cells. Biochem J. 2012; 443 (3): 757–68. DOI: 10.1042/BJ20111645.
  45. Glerup S., Schulz R., Laufs U., Schlüter K.D. Physiological and therapeutic regulation of PCSK9 activity in cardiovascular disease. Basic Res Cardiol. 2017; 112 (3): 32. DOI: 10.1007/s00395-017-0619-0.
  46. Khan A.R., James M.N. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 1998; 7 (4): 815–36. DOI: 10.1002/pro.5560070401.
  47. Poirier S., Mamarbachi M., Chen W.T., Lee A.S., Mayer G. GRP94 Regulates Circulating Cholesterol Levels through Blockade of PCSK9-Induced LDLR Degradation. Cell Rep. 2015; 13 (10): 2064–71. DOI: 10.1016/j.celrep.2015.11.006.
  48. Miller E.A., Beilharz T.H., Malkus P.N., Lee M.C., Hamamoto S., Orci L., Schekman R. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell. 2003; 114 (4): 497–509. DOI: 10.1016/s0092-8674(03)00609-3.
  49. Chen X.W., Wang H., Bajaj K., Zhang P., Meng Z.X., Ma D., Bai Y., Liu H.H., Adams E., Baines A., Yu G., Sartor M.A., Zhang B., Yi Z., Lin J., Young S.G., Schekman R., Ginsburg D. SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion. Elife. 2013; 2: e00444. DOI: 10.7554/eLife.00444.
  50. Gustafsen C., Kjolby M., Nyegaard M., Mattheisen M., Lundhede J., Buttenschøn H., Mors O., Bentzon J.F., Madsen P., Nykjaer A., Glerup S. The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab. 2014; 19 (2): 310–8. DOI: 10.1016/j.cmet.2013.12.006.
  51. Mayer G., Poirier S., Seidah N.G. Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels. J. Biol. Chem. 2008; 283 (46): 31791–801. DOI: 10.1074/jbc.M805971200.
  52. Della Pepa G., Bozzetto L., Annuzzi G., Rivellese A.A. Alirocumab for the treatment of hypercholesterolaemia. Expert Rev Clin. Pharmacol. 2017; 10 (6): 571–82. DOI: 10.1080/17512433.2017.1318063.
  53. Khoury E., Brisson D., Gaudet D. Preclinical discovery and development of evolocumab for the treatment of hypercholesterolemia. Expert Opin Drug Discov. 2020; 15 (4): 403–14. DOI: 10.1080/17460441.2020.
  54. Manniello M., Pisano M. Alirocumab (Praluent): First in the New Class of PCSK9 Inhibitors. P T. 2016; 41 (1): 28–53. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699483/
  55. Kasichayanula S., Grover A., Emery M.G., Gibbs M.A., Somaratne R., Wasserman S.M., Gibbs J.P. Clinical Pharmacokinetics and Pharmacodynamics of Evolocumab, a PCSK9 Inhibitor. Clin Pharmacokinet. 2018; 57 (7): 769–79. DOI: 10.1007/s40262-017-0620-7.
  56. Koren M.J., Sabatine M.S., Giugliano R.P., Langslet G., Wiviott S.D., Ruzza A., Ma Y., Hamer A.W., Wasserman S.M., Raal F.J. Long-Term Efficacy and Safety of Evolocumab in Patients With Hypercholesterolemia. J. Am. Coll. Cardiol. 2019; 74 (17): 2132–46. DOI: 10.1016/j.jacc.2019.08.1024.
  57. Chaulin A.M., Mazaev A.Ju., Aleksandrov A.G. Rol' proprotein konvertazy subtilizin/keksin tipa 9 (pcsk-9) v metabolizme holesterina i novye vozmozhnosti lipidkorrigujuschej terapii. Mezhdunarodnyj nauchno-issledovatel'skij zhurnal. 2019; 4–1 (82): 124–6. DOI: 10.23670/IRJ.2019.82.4.025. [Chaulin A.M., Mazaev A.Yu., Aleksandrov A.G. The role of proprotein convertase subtilisin/kexin of type 9 (pcsk-9) in cholesterol metabolism and new opportunities of lipid corrective therapy. International Research J. 2019; 4–1 (82): 124–6. DOI: 10.23670/IRJ.2019.82.4.025 (in Russian)]
  58. Agrawal N., Dasaradhi P.V., Mohmmed A., Malhotra P., Bhatnagar R.K., Mukherjee S.K. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev. 2003; 67 (4): 657–85. DOI: 10.1128/mmbr.67.4.657-685.2003.
  59. Nair J.K., Willoughby J.L., Chan A., Charisse K., Alam M.R., Wang Q., Hoekstra M., Kandasamy P., Kel’in A.V., Milstein S., Taneja N., O’Shea J., Shaikh S., Zhang L., van der Sluis R.J., Jung M.E., Akinc A., Hutabarat R., Kuchimanchi S., Fitzgerald K., Zimmermann T., van Berkel T.J., Maier M.A., Rajeev K.G., Manoharan M. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem Soc. 2014; 136 (49): 16958–61. DOI: 10.1021/ja505986a.
  60. Fitzgerald K., White S., Borodovsky A., Bettencourt B.R., Strahs A., Clausen V., Wijngaard P., Horton J.D., Taubel J., Brooks A., Fernando C., Kauffman R.S., Kallend D., Vaishnaw A., Simon A. A Highly Durable RNAi Therapeutic Inhibitor of PCSK9. N. Engl. J. Med. 2017; 376 (1): 41–51. DOI: 10.1056/NEJMoa1609243.
  61. Kosmas C.E., Muñoz Estrella A., Sourlas A., Silverio D., Hilario E., Montan P.D., Guzman E. Inclisiran: A New Promising Agent in the Management of Hypercholesterolemia. Diseases. 2018; 6 (3): 63. DOI: 10.3390/diseases6030063.
  62. Ray K.K., Wright R.S., Kallend D., Koenig W., Leiter L.A., Raal F.J., Bisch J.A., Richardson T., Jaros M., Wijngaard P.L.J., Kastelein J.J.P. ORION-10 and ORION-11 Investigators. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N. Engl. J. Med. 2020; 382 (16): 1507–19. DOI: 10.1056/NEJMoa1912387.
  63. Van Poelgeest E.P., Hodges M.R., Moerland M., Tessier Y., Levin A.A., Persson R., Lindholm M.W., Dumong Erichsen K., Ørum H., Cohen A.F., Burggraaf J. Antisense-mediated reduction of proprotein convertase subtilisin/kexin type 9 (PCSK9): a first-in-human randomized, placebo-controlled trial. Br. J. Clin. Pharmacol. 2015; 80 (6): 1350–61. DOI: 10.1111/bcp.12738.
  64. Miyosawa K., Watanabe Y., Murakami K., Murakami T., Shibata H., Iwashita M., Yamazaki H., Yamazaki K., Ohgiya T., Shibuya K., Mizuno K., Tanabe S., Singh S.A., Aikawa M. New CETP inhibitor K-312 reduces PCSK9 expression: a potential effect on LDL cholesterol metabolism. Am J Physiol Endocrinol Metab. 2015; 309 (2): 177–90. DOI: 10.1152/ajpendo.00528.2014.
  65. Steneberg P., Lindahl E., Dahl U., Lidh E., Straseviciene J., Backlund F., Kjellkvist E., Berggren E., Lundberg I., Bergqvist I., Ericsson M., Eriksson B., Linde K., Westman J., Edlund T., Edlund H. PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight. 2018; 3 (12): e99114. DOI: 10.1172/jci.insight.99114.
  66. Seidah N.G., Poirier S., Denis M., Parker R., Miao B., Mapelli C., Prat A., Wassef H., Davignon J., Hajjar K.A., Mayer G. Annexin A2 is a natural extrahepatic inhibitor of the PCSK9-induced LDL receptor degradation. PLoS One. 2012; 7 (7): e41865. DOI: 10.1371/journal.pone.0041865.
  67. Porteus M. Genome Editing: A New Approach to Human Therapeutics. Annu Rev Pharmacol Toxicol. 2016; 56: 163–90. DOI: 10.1146/annurev-pharmtox-010814-124454.
  68. Rashid S., Curtis D.E., Garuti R., Anderson N.N., Bashmakov Y., Ho Y.K., Hammer R.E., Moon Y.A., Horton J.D. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci USA. 2005; 102 (15): 5374–9. DOI: 10.1073/pnas.0501652102.
  69. Carreras A., Pane L.S., Nitsch R., Madeyski-Bengtson K., Porritt M., Akcakaya P., Taheri-Ghahfarokhi A., Ericson E., Bjursell M., Perez-Alcazar M., Seeliger F., Althage M., Knöll R., Hicks R., Mayr L.M., Perkins R., Lindén D., Borén J., Bohlooly-Y.M., Maresca M. In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model. BMC Biol. 2019; 17 (1): 4. DOI: 10.1186/s12915-018-0624-2.