Osteopontin as a factor of neuroinflammation in chronic non-infectious diseases

DOI: https://doi.org/10.29296/24999490-2021-03-04

M.V. Matveeva(1), Yu.G. Samoilova(1), D.A. Kudlay(2, 3), K.R. Ratkina(1), D.V. Podchinenova(1), O.A. Oleinyk(1), N.M. Diraeva(1), 1-Siberian State Medical University, Moskovsky Trakt 2, Tomsk, 634050, Russian Federation; 2-NRC Institute of Immunology FMBA of Russia, Kashirskoye highway 24, Moscow, 115522, Russian Federation; 3-I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya st. 8, build. 2, Moscow, 119991, Russian Federation Е-mail: [email protected]

Osteopontin (OPN) is a highly phosphorylated multifunctional glycosphoprotein with important functional activity in cancer and cardiovascular diseases, diabetes mellitus (DM), kidney and liver pathology, inflammatory process, and also influencing cell viability. Induced tissue remodeling and functional repair mainly depend on its positive role in coordinating proinflammatory and anti-inflammatory responses, anti-apoptotic action, and other mechanisms, such as effects on chemotaxis and proliferation of various cells. OPN has a key role on the secretion of interleukin-10 (IL)-10, -12, -3, interferon-γ, NF-κB, macrophages, and T cells. OPN has been widely used because of its ability to be used as a marker with diagnostic or prognostic value because its secreted levels can be measured and are comparable to its content in tissues. The purpose of this review is to examine the role of OPN in association with chronic noncommunicable diseases as well as neuroinflammation in these pathologies. Medline and the Cochrane Central Register of Controlled Trials (CENTRAL) databases from 2000 to 2021 were used to search the current literature.
Keywords: 
osteopontin, neuroinflammation, diabetes mellitus, obesity, cardiovascular pathology, cancer

Список литературы: 
  1. Kahles F., Findeisen H.M., Bruemmer D. Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes. Mol Metab. 2014; 3 (4): 384–93. DOI: 10.1016/j.molmet.2014.03.004
  2. Sarosiek K., Jones E., Chipitsyna G., Al-Zoubi M., Kang C., Saxena S., Gandhi A.V., Sendiky J., Yeo C.J., Arafat H.A. Osteopontin (OPN) isoforms, diabetes, obesity, and cancer; what is one got to do with the other? A new role for OPN. J. Gastrointest Surg. 2015; 19 (4): 639–50. DOI: 10.1007/s11605-014-2735-6.
  3. Icer M.A., Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin. Clin Biochem. 2018; 59: 17–24. DOI: 10.1016/j.clinbiochem.2018.07.003.
  4. Ahlqvist E., Osmark P., Kuulasmaa T., Pilgaard K., Omar B., Brons C. Link between GIP and osteopontin in adipose tissue and insulin resistance. Diabetes. 2013; 62: 2088–94.
  5. Kiefer F.W., Zeyda M., Todoric J., Huber J., Geyeregger R., Weichhart T. Osteopontin expression in human and murine obesity: extensive local up-regulation in adipose tissue but minimal systemic alterations. Endocrinology. 2008; 149: 1350–7.
  6. Nomiyama T., Perez-Tilve D., Ogawa D., Gizard F., Zhao Y., Heywood E.B. Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J. of Clinical Investigation. 2007; 117: 2877–88.
  7. Kiefer F.W., Zeyda M., Gollinger K., Pfau B., Neuhofer A., Weichhart T. Neutralization of osteopontin inhibits obesity-induced inflammation and insulin resistance. Diabetes. 2010; 59: 935–46.
  8. Chapman J., Miles P.D., Ofrecio J.M., Neels J.G., Yu J.G., Resnik J.L. Osteopontin is required for the early onset of high fat diet-induced insulin resistance in mice. PLoS One. 2010; 5: e13959.
  9. Samuvel D.J., Sundararaj K.P., Li Y., Lopes-Virella M.F., Huang Y. Adipocyte-mononuclear cell interaction, toll-like receptor 4 activation, and high glucose synergistically up-regulate osteopontin expression via an interleukin 6-mediated mechanism. J. of Biological Chemistry. 2010; 285: 3916–27.
  10. Omar B., Banke E., Guirguis E., Akesson L., Manganiello V., Lyssenko V. Regulation of the pro-inflammatory cytokine osteopontin by GIP in adipocytes – a role for the transcription factor NFAT and phosphodiesterase 3B. Biochemical and Biophysical Research Communications. 2012; 425: 812–7.
  11. Gualillo O., Gonzalez-Juanatey J.R., Lago F. The emerging role of adipokines as mediators of cardiovascular function: physiologic and clinical perspectives. Trends in Cardiovascular Medicine. 2007; 17: 275–83.
  12. Schinzari F., Tesauro M., Bertoli A., Valentini A., Veneziani A., Campia U., Cardillo C. Calcification biomarkers and vascular dysfunction in obesity and type 2 diabetes: influence of oral hypoglycemic agents. Am J Physiol Endocrinol Metab. 2019; 317 (4): 658–66. DOI: 10.1152/ajpendo.00204.2019.
  13. Komorowski J., Jankiewicz-Wika J., Kolomecki K., Cywinski J., Piestrzeniewicz K., Swietoslawski J. Systemic blood osteopontin, endostatin, and E-selectin concentrations after vertical banding surgery in severely obese adults. Cytokine. 2011; 55: 56–61.
  14. Schaller G., Aso Y., Schernthaner G.H., Kopp H.P., Inukai T., Kriwanek S. Increase of osteopontin plasma concentrations after bariatric surgery independent from inflammation and insulin resistance. Obesity Surgery. 2009; 19: 351–6.
  15. Zeyda M., Gollinger K., Todoric J., Kiefer F.W., Keck M., Aszmann O. Osteopontin is an activator of human adipose tissue macrophages and directly affects adipocyte function. Endocrinology. 2011; 152: 2219–27.
  16. Karamizadeh Z., Kamali Sarvestani E., Saki F., Karamifar H., Amirhakimi G.H., Namavar Shooshtarian M.H., Ashkani-Esfahani S. Investigation of osteopontin levels and genomic variation of osteopontin and its receptors in Type 1 diabetes mellitus. J. Endocrinol Invest. 2013; 36 (11): 1090–3. DOI: 10.3275/9098.
  17. Talat M.A., Sherief L.M., El-Saadany H.F., Rass A.A., Saleh R.M., Sakr M.M. The Role of Osteopontin in the Pathogenesis and Complications of Type 1 Diabetes Mellitus in Children. J. Clin. Res Pediatr Endocrinol. 2016; 8 (4): 399–404. DOI: 10.4274/jcrpe.3082.
  18. El Dayem SMA, El Bohy AEM, Battah AA, Hamed M, El Aziz SHA. Osteopontin for Early Detection of Microvascular and Macrovascular Type 1 Diabetic Complication. Open Access Maced J. Med Sci. 2019; 7 (21): 3619–22. DOI: 10.3889/oamjms.2019.613.
  19. Icer M.A., Gezmen-Karadag M. The multiple functions and mechanisms of osteopontin. Clin Biochem. 2018; 59: 17–24. DOI: 10.1016/j.clinbiochem.2018.07.003
  20. Maser R.E., Lenhard M.J., Pohlig R.T., Balagopal P.B. Osteopontin and osteoprotegerin levels in type 2 diabetes and their association with cardiovascular autonomic function. J. Diabetes Complications. 2016; 30 (3): 507–10. DOI: 10.1016/j.jdiacomp.2015.12.012.
  21. Gao N., Zhang-Brotzge X., Wali B., Sayeed I., Chern J.J., Blackwell L.S., Kuan C.Y., Reisner A. Plasma osteopontin may predict neuroinflammation and the severity of pediatric traumatic brain injury. J. Cereb Blood Flow Metab. 2020; 40 (1): 35–43. DOI: 10.1177/0271678X19836412.
  22. Maser R.E., James Lenhard M., Pohlig R.T., Babu Balagopal P. Osteopontin and clusterin levels in type 2 diabetes mellitus: differential association with peripheral autonomic nerve function. Neurol Sci. 2017; 38 (9): 1645–50. DOI: 10.1007/s10072-017-3019-1.
  23. Sponder M., Fritzer-Szekeres M., Marculescu R., Litschauer B., Strametz-Juranek J. Physical inactivity increases endostatin and osteopontin in patients with coronary artery disease. Heart Vessels. 2016; 31 (10): 1603–8. DOI: 10.1007/s00380-015-0778-6.
  24. Abdalrhim A.D., Marroush T.S., Austin E.E., Gersh B.J., Solak N., Rizvi S.A., Bailey K.R., Kullo I.J. Plasma Osteopontin Levels and Adverse Cardiovascular Outcomes in the PEACE Trial. PLoS One. 2016; 11 (6): e0156965. DOI: 10.1371/journal.pone.0156965.
  25. Podzimkova J., Palecek T., Kuchynka P., Marek J., Danek B.A., Jachymova M., Kalousova M. Plasma osteopontin levels in patients with dilated and hypertrophic cardiomyopathy. Herz. 2019; 44 (4): 347–353. DOI: 10.1007/s00059-017-4645-3.
  26. Yang Y., Wang Y., Gao P.J. Osteopontin associated with left ventricular hypertrophy and diastolic dysfunction in essential hypertension. J. Hum Hypertens. 2020; 34 (5): 388–96. DOI: 10.1038/s41371-019-0246-3.
  27. Lin R., Wu S., Zhu D., Qin M., Liu X. Osteopontin induces atrial fibrosis by activating Akt/GSK-3β/β-catenin pathway and suppressing autophagy. Life Sci. 2020; 245: 117328. DOI: 10.1016/j.lfs.2020.117328
  28. El-Din D.S.S., Amin A.I., Egiza A.O. Utility of Tissue Inhibitor Metalloproteinase-1 and Osteopontin as Prospective Biomarkers of Early Cardiovascular Complications in Type 2 Diabetes. Open Access Maced J. Med Sci. 2018; 6 (2): 314–9. DOI: 10.3889/oamjms.2018.081.
  29. Hao C., Cui Y., Owen S., Li W., Cheng S., Jiang W.G. Human osteopontin: Potential clinical applications in cancer (Review). Int J. Mol Med. 2017; 39 (6): 1327–37. DOI: 10.3892/ijmm.2017.2964
  30. Yu A., Guo K., Qin Q., Xing C., Zu X. Clinicopathological and prognostic significance of osteopontin expression in patients with prostate cancer: a systematic review and meta-analysis. Biosci Rep. 2021: BSR20203531. DOI: 10.1042/BSR20203531.
  31. Sun T., Li P., Sun D., Bu Q., Li G. Prognostic value of osteopontin in patients with hepatocellular carcinoma: A systematic review and meta-analysis. Medicine (Baltimore). 2018; 97 (43): e12954. DOI: 10.1097/MD.0000000000012954.
  32. Gu X., Gao X.S., Ma M., Qin S., Qi X., Li X., Sun S., Yu H., Wang W., Zhou D. Prognostic significance of osteopontin expression in gastric cancer: a meta-analysis. Oncotarget. 2016; 7 (43): 69666–73. DOI: 10.18632/oncotarget.11936.
  33. Lan Z., Fu D., Yu X., Xi M. Diagnostic values of osteopontin combined with CA125 for ovarian cancer: a meta-analysis. Fam Cancer. 2016; 15 (2): 221–30. DOI: 10.1007/s10689-015-9847-3. PMID: 26458935.
  34. Pizzamiglio C, Ripellino P, Prandi P, Clemente N, Saggia C, Rossi V, Strigaro G. Nerve conduction, circulating osteopontin and taxane-induced neuropathy in breast cancer patients. Neurophysiol Clin. 2020;50(1):47-54. DOI: 10.1016/j.neucli.2019.12.001.
  35. Chung A.G., Frye J.B., Zbesko J.C., Constantopoulos E., Hayes M., Figueroa A.G., Becktel D.A. Liquefaction of the Brain following Stroke Shares a Similar Molecular and Morphological Profile with Atherosclerosis and Mediates Secondary Neurodegeneration in an Osteopontin-Dependent Mechanism. eNeuro. 2018; 5 (5): ENEURO.0076-18.2018. DOI: 10.1523/ENEURO.0076-18.2018.
  36. Chimparlee N., Chuaypen N., Khlaiphuengsin A., Pinjaroen N., Payungporn S. Diagnostic and prognostic roles of serum osteopontin and osteopontin promoter polymorphisms in hepatitis B-related hepatocellular carcinoma. Asian Pac J. Cancer Prev. 2015; 16: 7211–7. DOI: 10.7314/APJCP.2015.16.16.7211
  37. Poruk K.E., Firpo M.A., Scaife C.L., Adler D.G., Emerson L.L., Boucher K.M., Mulvihill S.J. Serum osteopontin and tissue inhibitor of metalloproteinase 1 as diagnostic and prognostic biomarkers for pancreatic adenocarcinoma. Pancreas. 2013; 42: 193–7 DOI: 10.1097/MPA.0b013e31825e354d
  38. Carbone F., Vuilleumier N., Burger F., Roversi G., Tamborino C., Casetta I., Seraceni S., Trentini A., Padroni M., Dallegri F. Serum osteopontin levels are upregulated and predict disability after an ischaemic stroke. Eur J Clin Invest. 2015; 45 (6): 579–86. DOI: 10.1111/eci.12446.
  39. Ganz P., Amarenco P., Goldstein L.B., Sillesen H., Bao W., Preston G.M., Welch K.M.A. SPARCL Steering Committee. Association of Osteopontin, Neopterin, and Myeloperoxidase With Stroke Risk in Patients With Prior Stroke or Transient Ischemic Attacks: Results of an Analysis of 13 Biomarkers From the Stroke Prevention by Aggressive Reduction in Cholesterol Levels Trial. Stroke. 2017; 48 (12): 3223–31. DOI: 10.1161/STROKEAHA.117.017965.
  40. Zou C., Pei S., Yan W., Lu Q., Zhong X., Chen Q., Pan S., Wang Z., Wang H., Zheng D. Cerebrospinal Fluid Osteopontin and Inflammation-Associated Cytokines in Patients With Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Front Neurol. 2020; 11: 519692. DOI: 10.3389/fneur.2020.519692.
  41. Rentsendorj A., Sheyn J., Fuchs D.T., Daley D., Salumbides B.C., Schubloom H.E., Hart N.J., Li S., Hayden E.Y., Teplow D.B., Black K.L., Koronyo Y., Koronyo-Hamaoui M. A novel role for osteopontin in macrophage-mediated amyloid-β clearance in Alzheimer's models. Brain Behav Immun. 2018; 67: 163–80. DOI:10.1016/j.bbi.2017.08.019.