METHODS FOR MODELING HYPOTHYROIDISM: CLASSIFICATION AND MODELING PRINCIPLES

DOI: https://doi.org/10.29296/24999490-2021-04-04

A.M. Chaulin(1, 2), Yu.V. Grigorieva(2), G.N. Suvorova(2), D.V. Duplyakov(1, 2) 1-Samara Regional Cardiology Dispensary, Aerodromnaya str., 43, Samara, 443070, Russian Federation; 2-Samara State Medical University, Chapaevskaya St., 89, Samara, 443099, Russian Federation E-mail: [email protected]

Researchers widely use methods for modeling experimental pathological conditions to develop and preclinically evaluate the effectiveness of new drugs and study structural and functional changes in various organs and tissues. Hypothyroidism (hypofunction of the thyroid gland) is one of the most widespread diseases, which affects almost all structures of the human body. Due to the large number of methods developed to date for modeling hypothyroidism, there is a need to systematize them. The purpose of the literature review is to systematize the principles of modeling the thyroid gland’s hypofunction. This review presents a general classification, discusses the principles of implementation, and analyzes the advantages and disadvantages of the following hypothyroidism modeling methods: dietary, surgical, medicinal, immunological, radiosotopic, and genetic. These methods allow creating various specific conditions for the formation of hypofunction of the thyroid gland. To achieve the study’s goal, we analyzed the literature of domestic and foreign sources on the RSCI/elibrary and PubMed/Medline databases, respectively, published mainly during the last 20 years.
Keywords: 
hypothyroidism, thyroid hormones, modeling methods, iodine, thyroidectomy, thyrostatics, radioactive isotope of iodine, immunosuppressants, mutations

Список литературы: 
  1. Chaker L., Bianco A.C., Jonklaas J., Peeters R.P. Hypothyroidism. Lancet. 2017; 390 (10101): 1550–62. https://doi.org/10.1016/s0140-6736(17)30703-1
  2. Alam M.A., Quamri M.A., Sofi G., Ansari S. Update of hypothyroidism and its management in Unani medicine. J. Basic Clin Physiol Pharmacol. 2020:/j/jbcpp.ahead-of-print/jbcpp-2020-0121/jbcpp-2020-0121.xml. https://doi.org/10.1515/jbcpp-2020-0121
  3. Alam M.A., Quamri M.A. Herbal preparations in the management of hypothyroidism in Unani medicine. Drug Metab Pers Ther. 2020; 35 (3):/j/dmdi.2020.35.issue-3/dmpt-2020-0123/dmpt-2020-0123.xml. https://doi.org/10.1515/dmdi-2020-0123
  4. Salerno M., Improda N., Capalbo D. MANAGEMENT OF ENDOCRINE DISEASE Subclinical hypothyroidism in children. European J. of endocrinology. 2020; 183 (2): 13–28. https://doi.org/10.1530/EJE-20-0051
  5. Pérez-Campos Mayoral L., Hernández-Huerta M.T., Mayoral-Andrade G., Pérez-Campos Mayoral E., Zenteno E., Martinez-Cruz R., Martinez Ruiz H., Martinez Cruz M., Pérez Santiago A.D., Pérez-Campos E. TSH Levels in Subclinical Hypothyroidism in the 97.5th Percentile of the Population. International journal of endocrinology. 2020; 2698627. https://doi.org/10.1155/2020/2698627
  6. Gaitonde D.Y., Rowley K.D., Sweeney L.B. Hypothyroidism: an update. Am Fam Physician. 2012; 86 (3): 244–51. PMID: 22962987.
  7. Kyritsi E.M., Kanaka-Gantenbein C. Autoimmune Thyroid Disease in Specific Genetic Syndromes in Childhood and Adolescence. Front Endocrinol (Lausanne). 2020; 11: 543. https://doi.org/10.3389/fendo.2020.00543
  8. Reiners C., Drozd V., Yamashita S. Hypothyroidism after radiation exposure: brief narrative review. J. Neural Transm (Vienna). 2020; 127 (11): 1455–66. https://doi.org/10.1007/s00702-020-02260-5
  9. Vitebskaja A.V., Igamberdieva T.V. Vrozhdennyj gipotireoz v praktike pediatra. Meditsinskij Sovet. 2016; 7: 94–100. [Vitebskaya A.V., Igamberdieva T.V. Congenital hypothyroidism in pediatric practice. Medical Council (Meditsinskiy sovet). 2016; 7: 94–110 https://doi.org/10.21518/2079-701x-2016-07-94-100 (in Russian)]
  10. Bowden S.A., Goldis M. Congenital Hypothyroidism. In StatPearls. StatPearls Publishing. 2020. https://pubmed.ncbi.nlm.nih.gov/32644339/
  11. Tsujio M., Yoshioka K., Satoh M., Watahiki Y., Mutoh K. Skin morphology of thyroidectomized rats. Vet Pathol. 2008; 45 (4): 505–11. https://doi.org/10.1354/vp.45-4-505
  12. Ahsan M.K., Urano Y., Kato S., Oura H., Arase S. Immunohistochemical localization of thyroid hormone nuclear receptors in human hair follicles and in vitro effect of L-triiodothyronine on cultured cells of hair follicles and skin. J. Med Invest. 1998; 44 (3–4): 179–84. PMID: 9597806.
  13. Gao C., Wang Y., Li T., Huang J., Tian L. Effect of subclinical hypothyroidism on the skeletal system and improvement with short-term thyroxine therapy. Oncotarget. 2017; 8 (52): 90444–51. https://doi.org/10.18632/oncotarget.19568
  14. Delitala A.P., Scuteri A., Doria C. Thyroid Hormone Diseases and Osteoporosis. J. Clin. Med. 2020; 9 (4): 1034. https://doi.org/10.3390/jcm9041034
  15. Ritter M.J., Amano I., Hollenberg A.N. Thyroid Hormone Signaling and the Liver. Hepatology. 2020; 72 (2): 742–52. https://doi.org/10.1002/hep.31296
  16. Shafiee S.M., Vafaei A.A., Rashidy-Pour A. Effects of maternal hypothyroidism during pregnancy on learning, memory and hippocampal BDNF in rat pups: Beneficial effects of exercise. Neuroscience. 2016; 329: 151–61. https://doi.org/10.1016/j.neuroscience.2016.04.048
  17. Rashidy-Pour A., Derafshpour L., Vafaei A.A., Bandegi A.R., Kashefi A., Sameni H.R., Jashire-Nezhad N., Saboory E., Panahi Y. Effects of treadmill exercise and sex hormones on learning, memory and hippocampal brain-derived neurotrophic factor levels in transient congenital hypothyroid rats. Behav Pharmacol. 2020; 31 (7): 641–51. https://doi.org/10.1097/fbp.0000000000000572
  18. Chuhray S.M., Lavrynenko V.E., Kaminsky R.F., Dzevulska I.V., Malikov O.V., Kovalchuk O.I., Sokurenko L.M. Morphofunctional status of cardio-vascular system of rats with congenital hypothyreosis. Wiad Lek. 2019; 72 (2): 229–33. https://doi.org/10.36740/wlek201902116
  19. Deng H., Zhou S., Wang X., Qiu X., Wen Q., Liu S., Chen Q. Cardiovascular risk factors in children and adolescents with subclinical hypothyroidism: A protocol for meta-analysis and systematic review. Medicine (Baltimore). 2020; 99 (31): e20462. https://doi.org/10.1097/md.0000000000020462
  20. van Wijk N., Rijntjes E., van de Heijning B.J. Perinatal and chronic hypothyroidism impair behavioural development in male and female rats. Exp Physiol. 2008; 93 (11): 1199–209. https://doi.org/10.1113/expphysiol.2008.042416
  21. Kulimbetov M.T., Rashitov M.M., Saatov T.S. Modelirovanie eksperimental'nogo gipotireoza, obuslovlennogo estestvennym hronicheskim defitsitom joda v pitanii. Mezhdunarodnyj endokrinologicheskij zhurnal. 2009; 2 (20). URL: http://www.mif-ua.com/archive/article/8754 [Kulimbetov M.T., Rashitov M.M., Saatov T.S. Modeling of experimental hypothyroidism caused by natural chronic iodine deficiency in the diet. International journal of endocrinology. 2009; 2(20) (in Russian)]
  22. Helal M.B., Labah D.A., El-Magd M.A., Sarhan N.H., Nagy N.B. Thyroidectomy induces thyroglobulin formation by parotid salivary glands in rats. Acta histochemica. 2020; 122 (5): 151568. https://doi.org/10.1016/j.acthis.2020.151568
  23. Kade A.K., Smejanova L.A., Lieva K.A., Zanin S.A., Trofimenko A.I., Dzhidzhihja K.M. Modelirovanie gipotireoidnogo sostojanija u krysy posredstvom koaguljatsii verhnej i nizhnej schitovidnoj arterii sprava. Fundamental'nye issledovanija. 2013; 12–1: 116–21. [Kade A.K., Smeyanova L.A., Liyeva K.A., Zanin S.A., Trofimenko A.I., Dzhidzhikhiya K.M. Gipotireoid modelling of the condition at the rat by means of coagulation of the top and bottom thyroid artery on the right. Fundamental research. 2013; 12–1: 116–21 https://elibrary.ru/item.asp?id=20960834 (in Russian)]
  24. Berkowitz B.A., Luan H., Roberts R.L. Effect of methylimidazole-induced hypothyroidism in a model of low retinal neovascular incidence. Invest Ophthalmol Vis Sci. 2004; 45 (3): 919–21. https://doi.org/10.1167/iovs.03-0914
  25. Kamilov F.H., Ganeev T.I., Kozlov V.N., Kuznetsova E.V., Maksjutov R.R. Vybor sposoba primenenija i dozy tiamazola dlja modelirovanija gipotireoza u laboratornyh krys. Biomeditsina. 2018; 1: 59–70. [Kamilov F.K., Ganeyev T.I., Kozlov V.N., Kuznetsova E.V., Maksyutov R.R. The choice of a method of application and dosage of thiamazole for modeling hypothyroidism in laboratory rats. J. Biomed. 2018; 1: 59–70 (in Russian)]
  26. Hasebe M., Matsumoto I., Imagawa T., Uehara M. Effects of an anti-thyroid drug, methimazole, administration to rat dams on the cerebellar cortex development in their pups. Int J. Dev Neurosci. 2008; 26 (5): 409–14. https://doi.org/10.1016/j.ijdevneu.2008.03.007
  27. Johnson K.R., Marden C.C., Ward-Bailey P., Gagnon L.H., Bronson R.T., Donahue L.R. Congenital hypothyroidism, dwarfism, and hearing impairment caused by a missense mutation in the mouse dual oxidase 2 gene, Duox2. Mol Endocrinol. 2007; 21 (7): 1593–602. https://doi.org/10.1210/me.2007-0085
  28. Johnson K.R., Gagnon L.H., Longo-Guess C.M., Harris B.S., Chang B. Hearing impairment in hypothyroid dwarf mice caused by mutations of the thyroid peroxidase gene. J. Assoc Res Otolaryngol. 2014; 15 (1): 45–55. https://doi.org/10.1007/s10162-013-0427-7
  29. Löf C., Patyra K., Kero A., Kero J. Genetically modified mouse models to investigate thyroid development, function and growth. Best Pract Res Clin Endocrinol Metab. 2018; 32 (3): 241–56. https://doi.org/10.1016/j.beem.2018.03.007
  30. Usenko V., Lepekhin E., Lyzogubov V., Kornilovska I., Ushakova G., Witt M. The influence of low doses 131I-induced maternal hypothyroidism on the development of rat embryos. Exp Toxicol Pathol. 1999; 51 (3): 223–7. https://doi.org/10.1016/s0940-2993(99)80100-6
  31. Zhou J., Cheng G., Pang H., Liu Q., Liu Y. The effect of 131I-induced hypothyroidism on the levels of nitric oxide (NO), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), total nitric oxide synthase (NOS) activity, and expression of NOS isoforms in rats. Bosn J. Basic Med Sci. 2018; 18 (4): 305–12. https://doi.org/10.17305/bjbms.2018.2350
  32. Reilly C.P., Symons R.G., Wellby M.L. A rat model of the 131I-induced changes in thyroid function. J. Endocrinol Invest. 1986; 9 (5): 367–70. https://doi.org/10.1007/bf03346944
  33. Kaschenko S.A., Mosin D.V. Strukturnye i organometricheskie izmenenija schitovidnoj zhelezy krys v uslovijah immunosupressii i immunomoduljatsii na rannih srokah vozdejstvija. Ul'janovskij mediko-biologicheskij zhurnalju. 2020; 1: 110–8. [Kashchenko S.A., Mosin D.V. Structural and organometric changes in rat thyroid gland under early immunosuppressive and immunomodulatory therapy. Ulyanovsk Medico-Biological J. 2019; 1: 110–8 https://doi.org/10.34014/2227-1848-2019-1-110-118 (in Russian)]
  34. Delange F., Lecomte P. Iodine supplementation: benefits outweigh risks. Drug Saf. 2000; 22 (2): 89–95. https://doi.org/10.2165/00002018-200022020-00001
  35. Delitala A.P., Scuteri A., Maioli M., Mangatia P., Vilardi L., Erre G.L. Subclinical hypothyroidism and cardiovascular risk factors. Minerva medica. 2019; 110 (6): 530–45. https://doi.org/10.23736/S0026-4806.19.06292-X.
  36. Chen K., Carey L.C., Valego N.K., Liu J., Rose J.C. Thyroid hormone modulates renin and ANG II receptor expression in fetal sheep. Am J. Physiol Regul Integr Comp Physiol. 2005; 289 (4): 1006–14. https://doi.org/10.1152/ajpregu.00046.2005
  37. Chen K., Carey L.C., Valego N.K., Rose J.C. Thyroid hormone replacement normalizes renal renin and angiotensin receptor expression in thyroidectomized fetal sheep. Am. J. Physiol Regul Integr Comp Physiol. 2007; 293 (2): 701–6. https://doi.org/10.1152/ajpregu.00232.2007
  38. Kowalczyk E., Urbanowicz J., Kopff M., Ciećwierz J., Andryskowski G. Elements of oxidation/reduction balance in experimental hypothyroidism. Endokrynol Pol. 2011; 62 (3): 220–3.
  39. Krjuk Ju.Ja., Mahneva A.V., Zolotuhin S.E., Bitjukov D.S. Osobennosti projavlenija oksidativnogo stressa pri gipotireoze raznoj stepeni tjazhesti v eksperimente. Patologija. 2011; 8 (2): 62–5. [Kruk Y.Y., Mahneva A.V., Zolotuhin S.Y., Bitukov D.S. Features of manifestation of oxidative stress in hypothyreosis of different severity degrees in the experiment. Pathologia. 2011; 8 (2): 62–5 https://www.elibrary.ru/item.asp?id=20868729 (in Russian)]
  40. Bhargava H.N., Ramarao P., Gulati A., Matwyshyn G.A., Prasad R. Brain and pituitary receptors for thyrotropin-releasing hormone in hypothyroid rats. Pharmacology. 1989; 38 (4): 243–52. https://doi.org/10.1159/000138543
  41. Chaddha U., English R., Daniels J., Walia R., Mehta A.C., Panchabhai T.S. A 58-Year-Old Man With Fatigue, Weight Loss, and Diffuse Miliary Pulmonary Opacities. Chest. 2017; 151 (6): 131–4. https://doi.org/10.1016/j.chest.2016.11.015
  42. Bayraktar M., Gedik O., Akalin S., Usman A., Adalar N., Telatar F. The effect of radioactive iodine treatment on thyroid C cells. Clin Endocrinol (Oxf). 1990; 33 (5): 625–30. https://doi.org/10.1111/j.1365-2265.1990.tb03901.x
  43. Thurston V., Williams E.D. The effect of radiation on thyroid C cells. Acta Endocrinol (Copenh). 1982; 99 (1): 72–8. https://doi.org/10.1530/acta.0.0990072
  44. Feinstein R.E., Gimeno E.J., el-Salhy M., Wilander E., Walinder G. Evidence of C-cell destruction in the thyroid gland of mice exposed to high 131I doses. Acta Radiol Oncol. 1986; 25 (3): 199–202. https://doi.org/10.3109/02841868609136405
  45. Amendola E., De Luca P., Macchia P.E., Terracciano D., Rosica A., Chiappetta G., Kimura S., Mansouri A., Affuso A., Arra C., Macchia V., Di Lauro R., De Felice M. A mouse model demonstrates a multigenic origin of congenital hypothyroidism. Endocrinology. 2005; 146 (12): 5038–47. https://doi.org/10.1210/en.2005-0882
  46. Kimura S., Hara Y., Pineau T., Fernandez-Salguero P., Fox C.H., Ward J.M., Gonzalez F.J. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 1996; 10 (1): 60–9. https://doi.org/10.1101/gad.10.1.60
  47. Parlato R., Rosica A., Rodriguez-Mallon A., Affuso A., Postiglione M.P., Arra C., Mansouri A., Kimura S., Di Lauro R., De Felice M. An integrated regulatory network controlling survival and migration in thyroid organogenesis. Dev Biol. 2004; 276 (2): 464–75. https://doi.org/10.1016/j.ydbio.2004.08.048
  48. Mustapha M., Fang Q., Gong T.W., Dolan D.F., Raphael Y., Camper S.A., Duncan R.K. Deafness and permanently reduced potassium channel gene expression and function in hypothyroid Pit1dw mutants. J. Neurosci. 2009; 29 (4): 1212–23. https://doi.org/10.1523/jneurosci.4957-08.2009