SIRTUINS: PREDICTIVE MOLECULAR DIAGNOSIS OF ALZHEIMER’S DISEASE IN LONG-LIVER

DOI: https://doi.org/10.29296/24999490-2022-01-05

А.E. Pukhalskaya(1), N.S. Linkova(1–3), R.S. Umnov(1), K.L. Kozlov(1), I.M. Kvetnoy(4, 5), M.A. Paltsev(6) 1-Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, Saint Petersburg, 197110, Russian Federation; 2-Academy of postgraduate education under FSBU FSCC of FMBA of Russia, Volokolamskaya r., 91, Moscow, 125371, Russian Federation; 3-Belgorod National Research University, Pobedy str., 85, Belgorod, 308009, Russian Federation; 4-Saint Petersburg State University, Mendeleevskaya line, 2, Saint Petersburg, 199034, Russian Federation; 5-Saint Petersburg Scientific Research Institute of Phthisiopulmonology, Ligovsky pr., 2–4, Saint Petersburg, 191036, Russian Federation; 6-Moscow State University, Center of Immunology and Molecular Biomedicine, Lomonosovsky pr., 27, h.1, Moscow, 119192, Russian Federation

The incidence of Alzheimer’s disease (AD) in people older 80 years old is 52%. Consequently, the predictive diagnostic of this neurodegenerative disease in long-liver is the actual goal of molecular medicine and gerontology. The aim of the research is to compare saliva concentration of sirtuins of long-liver in early AD stage and people without neuropathology. Methods. All long-liver were divided into 2 groups: «norm» (90–94 years old, n=14) and AD patients (90–95 years old, n=15). The «norm» group includes persons without neuropathology and other somatic diseases in the acute phase. Saliva concentration of Sirt1, Sirt3, Sirt5, Sirt6 was measured by enzyme immunoassay method. Results. Saliva concentration of Sirt1, Sirt3 and Sirt6 AD patients was in 2.0, 3.7 and 3.0 times lower in comparison with corresponding parameter in the group «norm». Saliva concentration of Sirt5 of long-liver with Alzheimer’s disease and without neuropathology had no significant difference. Conclusion. Saliva concentration of Sirt1, Sirt3, Sirt6 assessment in the saliva of long-liver can apply as one of the criteria of molecular early AD diagnostic.
Keywords: 
Alzheimer’s disease, long-liver, saliva, sirtuins, lifetime diagnostic

Список литературы: 
  1. Breijyeh Z., Karaman R. Comprehensive Review on Alzheimer’s Disease: Causes and Treatment. Molecules. 2020; 25 (24): 5789. https://doi.org/10.3390/molecules25245789.
  2. Trevisan K., Cristina-Pereira R., Silva-Amaral D., Aversi-Ferreira T.A. Theories of Aging and the Prevalence of Alzheimer’s Disease. Biomed. Res. Int. 2019; 2019: 9171424. https://doi.org/10.1155/2019/9171424.
  3. Lopez O.L., Kuller L.H. Epidemiology of aging and associated cognitive disorders: Prevalence and incidence of Alzheimer’s disease and other dementias. Handb. Clin. Neurol. 2019; 167: 139–48. https://doi.org/10.1016/B978-0-12-804766-8.00009-1.
  4. Ausó E., Gómez-Vicente V., Esquiva G. Biomarkers for Alzheimer’s Disease Early Diagnosis. J. Pers. Med. 2020; 10 (3): 114. https://doi.org/10.3390/jpm10030114.
  5. Gleerup H.S., Hasselbalch S.G., Simonsen A.H. Biomarkers for Alzheimer’s Disease in Saliva: A Systematic Review. Dis. Markers. 2019; 2019: 4761054. https://doi.org/10.1155/2019/4761054.
  6. Pukhalskaia A.E., Dyatlova A.S., Linkova N.S., Kozlov K.L., Kvetnaia T.V., Koroleva M.V., Kvetnoy I.M. Sirtuins as possible predictors of aging in Alzheimer’s disease development: verification in the hippocampus and saliva. Bull. Exp. Biol. Med. 2020; 106 (6): 821–4. https://doi.org/10.1007./s105.17-020-04986-4.
  7. Pukhalskaia A. E., Linkova N. S., Diatlova A. S., Kozlov K.L., Kvetnoy I. M., Koroleva M. V., Volkov A. M. Sirtuins Expression in the Hippocampus and Buccal Epithelium of Elderly and Senile Individuals with Alzheimer’s Disease. Advances in Gerontology. 2021; 11 (2): 126–31. https://doi.org/10.1134/S2079057021020120.
  8. Julien C., Tremblay C., Emond V., Lebbadi M., Salem N. Jr., Bennett D.A., Calon F. Sirtuin 1 reduction parallels the accumulation of tau in Alzheimer disease. J. Neuropathol. Exp. Neurol. 2009; 68 (1): 48–58. https://doi.org/10.1097/NEN.0b013e3181922348.
  9. Koo J.H., Kang E.B., Oh Y.S., Yang D.S., Cho J.Y. Treadmill exercise decreases amyloid-β burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer’s disease. Exp. Neurol. 2017; 288: 142–52. https://doi.org/10.1016/j.expneurol.2016.11.014.
  10. Marwarha G., Raza S., Meiers C., Ghribi O. Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway. Biochim. Biophys. Acta. 2014; 1842 (9): 1587–95. https://doi.org/10.1016/j.bbadis.2014.05.015.
  11. Lee J., Kim Y., Liu T., Hwang Y.J., Hyeon S.J., Im H., Lee K., Alvarez V.E., McKee A.C., Um S.J., Hur M., Mook-Jung I., Kowall N.W., Ryu H. SIRT3 deregulation is linked to mitochondrial dysfunction in Alzheimer’s disease. Aging Cell. 2018; 17 (1): e12679. https://doi.org/10.1111/acel.12679.
  12. Salvatori I., Valle C., Ferri A., Carri M.T. SIRT3 and mitochondrial metabolism in neurodegenerative diseases. Neurochem. Int. 2017; 109: 184–92. https://doi.org/10.1016/j.neuint.2017.04.012.
  13. Yin J., Han P., Song M., Nielsen M., Beach T.G., Serrano G.E., Liang W.S., Caselli R.J., Shi J. Amyloid-β Increases Tau by Mediating Sirtuin 3 in Alzheimer’s Disease. Mol. Neurobiol. 2018; 55 (11): 8592–601. https://doi.org/10.1016/j.neuint.2017.04.012.
  14. Liu Y., Cheng A., Li Y.J., Yang Y., Kishimoto Y., Zhang S., Wang Y., Wan R., Raefsky S.M., Lu D., Saito T., Saido T., Zhu J., Wu L.J., Mattson M.P. SIRT3 mediates hippocampal synaptic adaptations to intermittent fasting and ameliorates deficits in APP mutant mice. Nat. Commun. 2019; 10 (1): 1886. https://doi.org/10.1038/s41467-019-09897-1.
  15. Cardinale A., de Stefano M.C., Mollinari C., Racaniello M., Garaci E., Merlo D. Biochemical characterization of sirtuin 6 in the brain and its involvement in oxidative stress response. Neurochem. Res. 2015; 40 (1): 59–69. https://doi.org/10.1007/s11064-014-1465-1.
  16. Braidy N., Poljak A., Grant R., Jayasena T., Mansour H., Chan-Ling T., Smythe G., Sachdev P., Guillemin G.J. Differential expression of sirtuins in the aging rat brain. Front. Cell. Neurosci. 2015; 9: 167. https://doi.org/10.3389/fncel.2015.00167.
  17. Jung E.S., Choi H., Song H., Hwang Y.J., Kim A., Ryu H., Mook-Jung I. p53-dependent SIRT6 expression protects Aβ42-induced DNA damage. Sci. Rep. 2016; 6: 25628. https://doi.org/10.1038/srep25628.
  18. Kaluski S., Portillo M., Besnard A., Stein D., Einav M., Zhong L., Ueberham U., Arendt T., Mostoslavsky R., Sahay A., Toiber D. Neuroprotective Functions for the Histone Deacetylase SIRT6. Cell Rep. 2017; 18 (13): 3052–62. https://doi.org/10.1016/j.celrep.2017.03.008.
  19. Tang B.L. Is SIRT6 Activity Neuroprotective and How Does It Differ from SIRT1 in This Regard? Front Cell Neurosci. 2017; 11: 165. https://doi.org/10.3389/fncel.2017.00165.