GENETIC PREDICTORS OF SPORADIC CONGENITAL HEART DEFECTS IN CHILDREN

DOI: https://doi.org/10.29296/24999490-2022-01-09

A.V. Shabaldin, A.V. Tsepokina, S.A. Shmulevich, A.V. Ponasenko Federal State Budgetary Scientific Institution Research Institute for Complex Issues of Cardiovascular Diseases, Pine Boulevard, 6, Kemerovo, 650002, Russian Federation

Background. Congenital heart defects can be embryopathies formed due to an imbalance in the processes of differentiation and proliferation in cardiac progenitor cells. One of the reasons for these disorders may be genetically restricted signaling, including that induced through Toll-like receptors (TLRs). Aim. To study the predictors in the TLRs genes for congenital heart defects. Material and methods. 80 children (39 girls and 41 boys) with congenital heart defects requiring cardiac surgery were included in this study. The control group was formed from 96 healthy children. Four TLR genes were studied (TLR1 rs5743611, TLR1 rs5743551, TLR2 rs5743708, TLR2 rs3804099, TLR4 rs4986791, TLR4 rs4986790, TLR6 rs3775073 and TLR6 rs5743810). Genotyping was performed by real-time PCR using TaqMan probes. Results. This study showed that the combination of alleles in polymorphic sites of TLRs genes was statistically significant only for ventricular septal defects. The formation of ventricular septal defect is associated with homozygosity for the G allele in the TLR2 gene (rs5743708) and the T allele in the TLR6 gene (rs3775073).
Keywords: 
TLRs genes, congenital heart defects, ventricular septal defect

Список литературы: 
  1. Saperova E. V., Vahlova I. V. Vrozhdennye poroki serdtsa u detej: rasprostranennost', faktory riska, smertnost'. Voprosy sovremennoj pediatrii. 2017; 16 (2): 126–33. https://doi.org/10.15690/vsp.v16i2.1713 [Saperova E.V., Vahlova I.V. ongenital Heart Diseases in Children: Incidence, Risk Factors, Mortality. Voprosy sovremennoj pediatrii. 2017; 16 (2): 126–33 (In Russian)]
  2. Demikova N.S., Lapina A.S., Podol'naja M.A., Putintsev A.N. Znachenie geneticheskih issledovanij v izuchenii prirody vrozhdennyh porokov razvitija. Rossijskij vestnik perinatologii i pediatrii. 2020; 65 (5): 7–11. https://doi.org/10.21508/1027-4065-2020-65-5-7-11 [Demikova N.S., Lapina A.S., Podol’naja M.A., Putincev A.N. The value of genetic analysis in the study of the nature of congenital malformations, Rossiyskiy Vestnik Perinatologii i Pediatrii. 2020; 65 (5): 7–11 (In Russian)]
  3. Nartsissova G.P., Volkova I.I., Len'ko O.A. Rol' faktorov riska prenatal'nogo perioda v vozniknovenii vrozhdennyh porokov serdtsa. Rossijskij vestnik perinatologii i pediatrii. 2014; 59 (5): 39–44. [Narcissova G.P., Volkova I.I., Len’ko O.A. Prenatal risk factors in the occurrence of congenital heart disease, Rossiyskiy Vestnik Perinatologii i Pediatrii. 2014; 59 (5): 39–44 (In Russian)]
  4. Shabalov N.P. Neonatologija. M.: GEOTAR-Media, 2019; 704. [Shabalov N.P. Neonatology. M.: GEOTAR-Media, 2019; 704 (In Russian)]
  5. Shabaldin A.V., Tsepokina A.V., Shmulevich S.A., Deeva N.S., Ponasenko A.V., Antonova L.V., Shabaldina E.V. Osobennosti sochetanij polimorfnyh lokusov gena triggernogo retseptora, ekspressiruemogo mieloidnymi kletkami (TREM-1), so sporadicheskimi vrozhdennymi porokami serdtsa bez hromosomnyh zabolevanij. Meditsinskaja immunologija. 2020; 22 (3): 507–18. https://doi.org/10.15789/1563-0625-AOP-1948 [Shabaldin A.V., Cepokina A.V., Shmulevich S.A., Deeva N.S., Ponasenko A.V., Antonova L.V., Shabaldina E.V. Association of polymorphisms the trigger receptor gene expressed by myeloid cells (TREM-1) in sporadic congenital heart defects without chromosome anomalies, Meditsinskaya Immunologiya. 2020; 22 (3): 505–18 (In Russian)]
  6. Kuvacheva N.V., Morgun A.V., Hilazheva E.D., Malinovskaja N.A., Gorina Ja.V., Pozhilenkova E.A., Salmina A.B. Formirovanie inflammasom: novye mehanizmy reguljatsii mezhkletochnyh vzaimodejstvij i sekretornoj aktivnosti kletok. Sibirskoe meditsinskoe obozrenie. 2013; 5: 3–10. [Kuvacheva N.V., Morgun A.V., Hilazheva E.D., Malinovskaja N.A., Gorina Ja.V., Pozhilenkova E.A., Salmina A.B. Inflammasomes forming: new mechanisms of intercellular interactions regulation and secretory activity of the cells. Siberian Medical Review. 2013; 5: 3–10 (In Russian)]
  7. Akira S. Toll receptor families: structure and function Semin Immunol. 2004; 16 (1): 1–2. https://doi.org/10.1016/j.smim.2003.10.001
  8. Frantz S., Ertl G. Bauersachs J. Mechanisms of Disease: Toll-like receptors in cardiovascular disease. Nat Rev Cardiol. 2007; 4 (8): 444–54. https://doi.org/10.1038/ncpcardio0938.
  9. Suluba E., Shuwe, L., Xia Q., Mwanga A. Congenital heart diseases: genetics, non-inherited risk factors, and signaling pathways. Egypt J. Med Hum Genet. 2020; 21 (1): 1–12. https://doi.org/10.1186/s43042-020-0050-1;
  10. McGettrick A. F., O’Neill L. Localisation and trafficking of Toll-like receptors: an important mode of regulation. Curr. Opin. Immunol. 2010; 22 (1): 20–7. https://doi.org/10.1016/j.coi.2009.12.002
  11. Mikacenic C., Reiner A.P., Holden T.D., Nickerson D.A., Wurfel M.M. Variation in the TLR10/TLR1/TLR6 locus is the major genetic determinant of interindividual difference in TLR1/2-mediated responses. Genes Immun. 2013; 14 (1): 52–7. https://doi.org/10.1038/gene .2012.53
  12. Qian C., Cao X. Regulation of Toll-like receptor signaling pathways in innate immune responses. Ann. N.Y. Acad. Sci. 2013; 1283: 67–74. https://doi.org/10.1111/j.1749-6632.2012.06786.x
  13. Poltorak A.N. Toll-podobnye retseptory kak paradigma kletki. J. of Biomedical Technologies. 2014; 1: 52–7. [Poltorak A.N. Toll-like receptor as a paradigm of the cell. J. of Biomedical Technologies. 2014; 1: 52–7 (In Russian)]
  14. Zhidkova I.I., Ponasenko A.V., Hutornaja M.V., Kutihin A.G., Barbarash O.L. Geneticheskie faktory (geny retseptorov vrozhdennogo immuniteta – TLRs) v patogeneze ateroskleroza i ego oslozhnenij. Meditsinskaja immunologija. 2017; 19 (3): 241–54. https://doi.org/10.15789/1563-0625-2017-3-241-254 [Zhidkova I.I., Ponasenko A.V., Hutornaja M.V., Kutihin A.G., Barbarash O.L. Genomic factors (Toll-like receptors genes) in development of atherosclerosis and its clinical manifestations. Meditsinskaya Immunologiya. 2017; 19 (3): 241–54 (In Russian)]
  15. Sharma S., Garg I., Ashraf M. Z. TLR signalling and association of TLR polymorphism with cardiovascular diseases. Vascular pharmacology. 2016; 87: 30–7. https://doi.org/10.1016/j.vph.2016.10.008
  16. Ioana M., Ferwerda B., Plantinga T.S., Stappers M., Oosting M., McCall M., Cimpoeru A., Burada F., Panduru N., Sauerwein R., Doumbo O., van der Meer J.W., van Crevel R., Joosten L.A., Netea M.G. Different patterns of Toll-like receptor 2 polymorphisms in populations of various ethnic and geographic origins. Infect. Immun. 2012; 80 (5): 1917–22. https://doi.org/10.1128/IAI.00121-12
  17. Krohaleva Ju.A., Strambovskaja N.N., Alferova A.E. Geneticheskij polimorfizm toll-retseptorov u bol'nyh ishemicheskim insul'tom v Zabajkal'skom krae. Zabajkal'skij meditsinskij vestnik. 2014; 4: 62-67. [Krohaleva Ju.A., Strambovskaja N.N., Alferova A.E. Genetic polymorphism of toll-receptors in patients with ischemic stroke in the Transbaikal region. Zabajkal’skij medicinskij vestnik. 2014; 4: 62–7 (In Russian)]
  18. Balistreri C.R., Candore G., Mirabile M., Lio D., Caimi G., Incalcaterra E., Caruso M., Hoffmann E., Caruso C. TLR2 and age-related diseases: potential effects of Arg753Gln and Arg677Trp polymorphisms in acute myocardial infarction. Rejuvenation Res. 2008; 11 (2): 293–6. https://doi.org/10.1089/rej.2008.0666
  19. Song Y., Liu H., Long L., Zhang N., Liu Y. TLR4 rs1927911, but not TLR2 rs5743708, is associated with atherosclerotic cerebral Infarction in the Southern Han Population: a case-control study. Medicine (Baltimore). 2015; 94 (2): e381. https://doi.org/10.1097/MD.0000000000000381.