KISSPEPTINS: MOLECULAR MECHANISMS OF RESPIRATORY SYSTEM PATHOLOGY

DOI: https://doi.org/10.29296/24999490-2022-04-01

M.A. Paltsev(1), A.O. Drobintseva(2, 3), E.S. Mironova(2, 4), E.M. Paltseva(5), Do Ngoc Hop(2, 6, 7), U.A. Novak-Bobarykina(6), D.O. Leontyeva(2, 4)
1-Lomonosov Moscow State University, Leninskie gory, 1, Moscow, 119192, Russian Federation;
2-St. Petersburg Research Institute of Phthisiopulmonology, Ligovsky Ave., 2–4, St. Petersburg, 191036, Russian Federation;
3-St. Petersburg State Pediatric Medical University, Litovskaya st., 2, St. Petersburg, 194100, Russian Federation;
4-St. Petersburg Institute of Bioregulation and Gerontology, Dynamo Ave., 3, St. Petersburg, 197110, Russian Federation;
5-Russian Academy of Sciences, Leninsky Ave., 32a, Moscow, 119334, Russian Federation;
6-St. Petersburg State University, Universitetskaya amb., 7/9, St. Petersburg, 199034, Russian Federation;
7-Dr. Vietnam Military Medical University, Phung Hung st., 160, Hanoi, Vietnam

The pathology of the respiratory organs is the leading one in the structure of the general human morbidity. Every year the number of diseases of the respiratory system increases, and the associated mortality increases in parallel. The study of the causes and mechanisms of development of lung pathology, as well as the development of adequate methods for diagnosing, treating and preventing diseases of the respiratory system, carried out at the molecular and cellular levels, is not only an important, but also an extremely urgent task of biomedicine. As is known, the violation of homeostasis between cell proliferation and apoptosis leads to inflammatory changes and/or fibrosis of the lung tissue. The purpose of this review was to systematize scientific data on the expression of kisspeptins and their function in the pathology of the respiratory system. Material and methods. The expression of kisspeptins and their receptors was analyzed in pulmonary fibrosis, bronchial asthma, and non-small cell lung cancer. In addition, the role of kisspeptins in the development of the body’s immune response to viral infections in the cells of the ciliated epithelium of the upper respiratory tract has been shown. Conclusion. More and more data from modern studies demonstrate the involvement of kisspeptins and their participation in the regulation of the cell cycle, limiting cell metastasis, and other processes.
Keywords: 
kisspeptins, pulmonary fibrosis, bronchial asthma, lung carcinoma

Список литературы: 
  1. Barcik W., Boutin R.C.T., Sokolowska M., Finlay B.B. The Role of Lung and Gut Microbiota in the Pathology of Asthma. Immunity. 2020; 52 (2): 241–55. https://doi.org/10.1016/j.immuni.2020.01.007.
  2. Bhalakiya N., Haque N., Patel P. Kisspeptin: A Novel Regulator in Reproductive Physiology. International J. of Livestock Research. 2019; 9 (7): 1–13. https://doi.org/10.5455/ijlr.20190222105709.
  3. Lee J.H., Miele M.E., Hicks D.J. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J. Natl. Cancer Inst. 1996; 88: 1731–7.
  4. Harter C.J.L, Kavanagh G.S., Smith J.T. The role of kisspeptin neurons in reproduction and metabolism. J. Endocrinol. 2018; 238 (3): 173–83. https://doi.org/10.1530/JOE-18-0108.
  5. Navarro V.M. Metabolic regulation of kisspeptin – the link between energy balance and reproduction. Nat Rev Endocrinol. 2020; 16 (8): 407–20. https://doi.org/10.1038/s41574-020-0363-7.
  6. Hu K.L., Chang H.M., Zhao H.C., Yu Y., Li R., Qiao J. Potential roles for the kisspeptin/kisspeptin receptor system in implantation and placentation. Hum Reprod Update. 2019; 25 (3): 326–43. https://doi.org/10.1093/humupd/dmy046.
  7. Iwata K., Kunimura Y., Ozawa H. Hypothalamic Kisspeptin Expression in Hyperandrogenic Female Rats and Aging Rats. Acta Histochem Cytochem. 2019; 52 (5): 85–91. https://doi.org/10.1267/ahc.19013.
  8. Rønnekleiv O.K., Qiu J., Kelly M.J. Arcuate Kisspeptin Neurons Coordinate Reproductive Activities with Metabolism. Semin Reprod Med. 2019; 37 (3): 131–40. https://doi.org/10.1055/s-0039-3400251.
  9. Trevisan C.M., Montagna E., de Oliveira R., Christofolini D.M., Barbosa C.P., Crandall K.A., Bianco B. Kisspeptin/GPR54 System: What Do We Know About Its Role in Human Reproduction? Cell Physiol Biochem. 2018; 49 (4): 1259–76. https://doi.org/10.1159/000493406.
  10. Zhang X., Matziari M., Xie Y., Fernig D., Rong R., Meng J., Lu Z.L. Functional examination of novel kisspeptin phosphinic peptides. PLoS One. 2018; 13 (4): e0195089. https://doi.org/10.1371/journal.pone.0195089.
  11. Platonov M.E., Borovjagin A.V., Kaverina N., Xiao T., Kadagidze Z., Lesniak M., Baryshnikova M., Ulasov I.V. KISS1 tumor suppressor restricts angiogenesis of breast cancer brain metastases and sensitizes them to oncolytic virotherapy in vitro. Cancer Lett. 2018; 417: 75–88. https://doi.org/10.1016/j.canlet.2017.12.024.
  12. Чучалин А.Г., Авдеев С.Н., Айсанов З.Р. Диагностика и лечение идиопатического легочного фиброза. Федеральные клинические рекомендации. Пульмонология. 2016; 26 (4): 399–419. https://doi.org/10.18093/0869-0189-2016-26-4-399-419 [Chuchalin A.G., Avdeev S.N., Aisanov Z.R. Diagnosis and treatment of idiopathic pulmonary fibrosis. Federal clinical guidelines. Pulmonology. 2016; 26 (4): 399–419. https://doi.org/10.18093/0869-0189-2016-26-4-399-419 (In Russian)].
  13. Авдеев С.Н., Чикина С.Ю., Нагаткина О.В. Идиопатический легочный фиброз: новые международные клинические рекомендации. Пульмонология. 2019; 29 (5): 525–52. https://doi.org/10.18093/0869-0189-2019-29-5-525-552 [Avdeev S.N., Chikina S.Yu., Nagatkina O.V. Idiopathic pulmonary fibrosis: new international clinical guidelines. Pulmonology. 2019; 29 (5): 525–52. https://doi.org/10.18093/0869-0189-2019-29-5-525-552 (In Russian)].
  14. Lederer D.J., Martinez F.J. Idiopathic Pulmonary Fibrosis. N Engl J Med. 2018; 378 (19): 1811–23. https://doi.org/10.1056/NEJMra1705751.
  15. He L., Yuan L., Yu W., Sun Y., Jiang D., Wang X., Feng X., Wang Z., Xu J., Yang R., Zhang W., Feng H., Chen H.Z., Zeng Y.A., Hui L., Wu Q., Zhang Y., Zhang L. A Regulation Loop between YAP and NR4A1 Balances Cell Proliferation and Apoptosis. Cell Rep. 2020; 33 (3): 108284. https://doi.org/10.1016/j.celrep.2020.108284.
  16. Chiang C.M., Chiu H.Y., Chang C.S., Chien Y.Y., Jong D.S., Wu L.S., Chiu C.H. Role of kisspeptin on cell proliferation and steroidogenesis in luteal cells in vitro and in vivo. J Chin Med Assoc. 2021; 84 (4): 389–99. https://doi.org/10.1097/JCMA.0000000000000508.
  17. Watanabe T., Sato K. Roles of the kisspeptin/GPR54 system in pathomechanisms of atherosclerosis. Nutr Metab Cardiovasc Dis. 2020; 30 (6): 889–95. https://doi.org/10.1016/j.numecd.2020.02.017.
  18. Lei Z., Bai X., Ma J., Yu Q. Kisspeptin‑13 inhibits bleomycin‑induced pulmonary fibrosis through GPR54 in mice. Mol Med Rep. 2019; 20 (2): 1049–56. https://doi.org/10.3892/mmr.2019.10341.
  19. Purohit D., Ahirwar A.K., Sakarde A., Asia P., Gopal N. COVID-19 and lung pathologies. Horm Mol. Biol. Clin. Investig. 2021; 42 (4): 435–43. https://doi.org/10.1515/hmbci-2020-0096.
  20. Huang H., Xiong Q., Wang N., Chen R., Ren H., Siwko S., Han H., Liu M., Qian M., Du B. Kisspeptin/GPR54 signaling restricts antiviral innate immune response through regulating calcineurin phosphatase activity. Sci Adv. 2018; 4 (8): eaas9784. https://doi.org/10.1126/sciadv.aas9784.
  21. Wang D.., Wu Z, Zhao C., Yang X., Wei H., Liu M., Zhao J., Qian M., Li Z., Xiao J. KP-10/Gpr54 attenuates rheumatic arthritis through inactivating NF-κB and MAPK signaling in macrophages. Pharmacol Res. 2021; 171: 105496. https://doi.org/10.1016/j.phrs.2021.105496.
  22. Pignataro F.S., Bonini M., Forgione A., Melandri S., Usmani O.S. Asthma and gender: The female lung. Pharmacol Res. 2017; 119: 384–90. https://doi.org/10.1016/j.phrs.2017.02.017.
  23. Chiarella S.E., Cardet J.C.., Prakash YS. Sex, Cells, and Asthma. Mayo Clin Proc. 2021; 96 (7): 1955–69. https://doi.org/10.1016/j.mayocp.2020.12.007.
  24. Borkar N.A., Ambhore N.S., Kalidhindi R.S.R., Pabelick C.M., Prakash Y.S., Sathish V. Kisspeptins inhibit human airway smooth muscle proliferation. JCI Insight. 2022; e152762. https://doi.org/10.1172/jci.insight.152762.
  25. Duma N., Santana-Davila R., Molina J.R. Non-Small Cell Lung Cancer: Epidemiology, Screening, Diagnosis, and Treatment. Mayo Clin Proc. 2019; 94 (8): 1623–40. https://doi.org/10.1016/j.mayocp.2019.01.013.
  26. Sun Y.B., Xu S. Expression of KISS1 and KISS1R (GPR54) may be used as favorable prognostic markers for patients with non-small cell lung cancer. Int. J. Oncol. 2013; 43 (2): 521–30. https://doi.org/10.3892/ijo.2013.1967.
  27. Zheng S., Chang Y., Hodges K.B., Sun Y., Ma X., Xue Y., Williamson S.R., Lopez-Beltran A., Montironi R., Cheng L. Expression of KISS1 and MMP-9 in non-small cell lung cancer and their relations to metastasis and survival. Anticancer Res. 2010; 30 (3): 713–8.