SARS-CоV-2 INFECTION AS A RISK FACTOR FOR THE DEVELOPMENT OF AUTOIMMUNE PATHOLOGY

DOI: https://doi.org/10.29296/24999490-2022-05-01

A.M. Timofeeva(1), S.E. Sedykh(1, 2), G.A. Nevinsky(1, 2)
1-Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences,
Russian Federation, 630090, Novosibirsk, Lavrent’eva st., 8;
2-Novosibirsk State University, Russian Federation, 630090, Novosibirsk, Pirogova st., 1

Relevance: The review is devoted to the analyses of literature data on disorders of the immune system in COVID-19. Since some of the clinical symptoms of COVID-19 are consistent with those of autoimmune diseases, one of the fundamental questions about COVID-19 pathogenesis is whether SARS-CoV-2 infection is a risk factor for autoimmune disorders. Objective: The assessment of the possible role of the humoral response, in particular, antibodies with different specificity to COVID-19, in developing autoimmune reactions. Material and methods: Scientific publications on the autoimmune diseases published over the past 15 years and on COVID-19 for 2020–2022 were analyzed and systemized; the articles were searched in the PubMed and Scopus databases. Results: This review compares classical autoimmune diseases and COVID-19. This comparison is relevant since the use of drugs commonly prescribed for autoimmune diseases is practised in treating patients with severe COVID-19. The variety of autoantibodies in COVID-19 may reflect transient immune activation under conditions of acute infection, as well as early loss of tolerance and further development of chronic autoimmune pathology. Here we review the viral infections triggering autoimmune pathologies and possible mechanisms of autoimmunity induction in COVID-19; we classified the main groups of antibodies described in patients with COVID-19.
Keywords: 
COVID-19, SARS-CoV-2, autoimmune diseases, antibodies, autoimmunity

Список литературы: 
  1. Albiol N., Awol R., Martino R. Autoimmune thrombotic thrombocytopenic purpura (TTP) associated with COVID-19. Ann Hematol. 2020; 99 (7): 1673–4. https://doi.org/10.1007/s00277-020-04097-0
  2. Malkova A.M., Kudryavtsev I.V., Starshinova A.A., Kudlay D.A., Zinchenko Yu.S., Glushkova A., Yablonskiy P., Shoenfeld Ye. Post COVID-19 syndrome in patients with asymptomatic/mild form. Pathogens. 2021; 10 (11), 1408: 1–11.
  3. Maeda Y., Nishikawa H., Sugiyama D. et al. Detection of self-reactive CD8 + T cells with an anergic phenotype in healthy individuals. Science (80-). 20 14; 346 (6216): 1536–40. https://doi.org/10.1126/science.aaa1292
  4. Hejrati A., Rafiei A., Soltanshahi M. et al. Innate immune response in systemic autoimmune diseases: a potential target of therapy. Inflammopharmacology. 2020; 28 (6): 1421–38. https://doi.org/10.1007/s10787-020-00762-y
  5. Shoenfeld Y. The mosaic of autoimmunity the role of environmental factors. Front Biosci. 2009; E1 (2): e46. https://doi.org/10.2741/e46
  6. Smatti M.K., Cyprian F.S., Nasrallah G.K., Al Thani A.A., Almishal R.O., Yassine H.M. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019; 11 (8): 762. https://doi.org/10.3390/v11080762
  7. Sene D., Piette J.-C., Cacoub P. Antiphospholipid antibodies, antiphospholipid syndrome and infections. Autoimmun Rev. 2008; 7 (4): 272–7. https://doi.org/10.1016/j.autrev.2007.10.001
  8. Timofeeva A., Sedykh S., Nevinsky G. Post-Immune Antibodies in HIV-1 Infection in the Context of Vaccine Development: A Variety of Biological Functions and Catalytic Activities. Vaccines. 2022; 10 (3): 384. https://doi.org/10.3390/vaccines10030384
  9. Abdel-Wahab N., Lopez-Olivo M.A., Pinto-Patarroyo G.P., Suarez-Almazor M.E. Systematic review of case reports of antiphospholipid syndrome following infection. Lupus. 2016; 25 (14): 1520–31. https://doi.org/10.1177/0961203316640912
  10. Козлов В.А., Тихонова Е.П., Савченко А.А., Кудрявцев И.В., Андронова Н.В., Анисимова Е.Н., Головкин А.С., Демина Д.В., Здзитовецкий Д.Э., Калинина Ю.С., Каспаров Э.В., Козлов И.Г., Корсунский И.А., Кудлай Д.А., Кузьмина Т.Ю., Миноранская Н.С., Продеус А.П., Старикова Э.А., Черданцев Д.В., Чесноков А.Б., П.А. Шестерня, А.Г. Борисов. Клиническая иммунология. Практическое пособие для инфекционистов. Красноярск: Поликор, 2021; 563. [Kozlov V.A., Tihonova E.P., Savchenko A.A., Kudryavcev I.V., Andronova N.V., Anisimova E.N., Golovkin A.S., Demina D.V., Zdzitoveckij D.E., Kalinina YU.S., Kasparov E.V., Kozlov I.G., Korsunskij I.A., Kudlaj D.A., Kuz’mina T.YU., Minoranskaya N.S., Prodeus A.P., Starikova E.A., CHerdancev D.V., CHesnokov A.B., P.A. SHesternya, A.G. Borisov. Clinical immunology. Prakticheskoe posobie dlya infekcionistov. Krasnoyarsk: Polikor, 2021; 563 (in Russian)].
  11. Ruan Q., Yang K., Wang W., Jiang L., Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020; 46 (5): 846–8. https://doi.org/10.1007/s00134-020-05991-x
  12. Bastard P., Rosen L.B., Zhang Q. et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science (80-). 2020; 370 (6515). https://doi.org/10.1126/science.abd4585
  13. Jenks S.A., Cashman K.S., Zumaquero E. et al. Distinct Effector B Cells Induced by Unregulated Toll-like Receptor 7 Contribute to Pathogenic Responses in Systemic Lupus Erythematosus. Immunity. 2018; 49 (4): 725–39.e6. https://doi.org/10.1016/j.immuni.2018.08.015
  14. Zuo Y., Estes S.K., Ali R.A. et al. Prothrombotic autoantibodies in serum from patients hospitalized with COVID-19. Sci Transl Med. 2020; 12 (570). https://doi.org/10.1126/scitranslmed.abd3876
  15. Xu Z., Shi L., Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020; 8 (4): 420–2. https://doi.org/10.1016/S2213-2600(20)30076-X
  16. Huang C., Wang Y., Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395 (10223): 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
  17. Kanduc D., Shoenfeld Y. Molecular mimicry between SARS-CoV-2 spike glycoprotein and mammalian proteomes: implications for the vaccine. Immunol Res. 2020; 68 (5): 310–3. https://doi.org/10.1007/s12026-020-09152-6
  18. Anand P., Puranik A., Aravamudan M., Venkatakrishnan A., Soundararajan V. SARS-CoV-2 strategically mimics proteolytic activation of human ENaC. Elife. 2020; 9. https://doi.org/10.7554/eLife.58603
  19. Lucchese G., Flöel A. Molecular mimicry between SARS-CoV-2 and respiratory pacemaker neurons. Autoimmun Rev. 2020; 19 (7): 102556. https://doi.org/10.1016/j.autrev.2020.102556
  20. Marino Gammazza A., Légaré S., Lo Bosco G. et al. Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: possible role of molecular mimicry in COVID-19. Cell Stress Chaperones. 2020; 25 (5): 737–41. https://doi.org/10.1007/s12192-020-01148-3
  21. Lucchese G., Flöel A. SARS-CoV-2 and Guillain-Barré syndrome: molecular mimicry with human heat shock proteins as potential pathogenic mechanism. Cell Stress Chaperones. 2020; 25 (5): 731–5. https://doi.org/10.1007/s12192-020-01145-6
  22. Venkatakrishnan A.J., Kayal N., Anand P., Badley A.D., Church G.M., Soundararajan V. Benchmarking evolutionary tinkering underlying human–viral molecular mimicry shows multiple host pulmonary–arterial peptides mimicked by SARS-CoV-2. Cell Death Discov. 2020; 6 (1): 96. https://doi.org/10.1038/s41420-020-00321-y
  23. Rahimi K. Guillain-Barre syndrome during COVID-19 pandemic: an overview of the reports. Neurol Sci. 2020; 41 (11): 3149–56. https://doi.org/10.1007/s10072-020-04693-y
  24. Toscano G., Palmerini F., Ravaglia S. et al. Guillain–Barré Syndrome Associated with SARS-CoV-2. N. Engl. J. Med. 2020; 382 (26): 2574–6. https://doi.org/10.1056/NEJMc2009191
  25. Guan W., Ni Z., Hu Y. et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N. Engl. J. Med. 2020; 382 (18): 1708–20. https://doi.org/10.1056/NEJMoa2002032
  26. Mateu-Salat M., Urgell E., Chico A. SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves’ disease after COVID-19. J. Endocrinol Invest. 2020; 43 (10): 1527–8. https://doi.org/10.1007/s40618-020-01366-7
  27. Lopez C., Kim J., Pandey A., Huang T., DeLoughery T.G. Simultaneous onset of COVID-19 and autoimmune haemolytic anaemia. Br. J. Haematol. 2020; 190 (1): 31–2. https://doi.org/10.1111/bjh.16786
  28. Akca U.K., Kesici S., Ozsurekci Y. et al. Kawasaki-like disease in children with COVID-19. Rheumatol Int. 2020; 40 (12): 2105–15. https://doi.org/10.1007/s00296-020-04701-6
  29. Marchand L., Pecquet M., Luyton C. Type 1 diabetes onset triggered by COVID-19. Acta Diabetol. 2020; 57 (10): 1265–6. https://doi.org/10.1007/s00592-020-01570-0
  30. Kazzaz N.M., McCune W.J., Knight J.S. Treatment of catastrophic antiphospholipid syndrome. Curr Opin Rheumatol. 2016; 28 (3): 218–27. https://doi.org/10.1097/BOR.0000000000000269
  31. Cesarman-Maus G., Rios-Luna N.P., Deora A.B. et al. Autoantibodies against the fibrinolytic receptor, annexin 2, in antiphospholipid syndrome. Blood. 2006; 107 (11): 4375–82. https://doi.org/10.1182/blood-2005-07-2636
  32. Pascolini S., Vannini A., Deleonardi G. et al. COVID-19 and Immunological Dysregulation: Can Autoantibodies be Useful? Clin Transl Sci. 2021; 14 (2): 502–8. https://doi.org/10.1111/cts.12908
  33. Ehrenfeld M., Tincani A., Andreoli L. et al. Covid-19 and autoimmunity. Autoimmun Rev. 2020; 19 (8): 102597. https://doi.org/10.1016/j.autrev.2020.102597
  34. Canas F., Simonin L., Couturaud F., Renaudineau Y. Annexin A2 autoantibodies in thrombosis and autoimmune diseases. Thromb Res. 2015; 135 (2): 226–30. https://doi.org/10.1016/j.thromres.2014.11.034
  35. Jiang S.-L., Pan D.-Y., Gu C., Qin H.-F., Zhao S.-H. Annexin A2 silencing enhances apoptosis of human umbilical vein endothelial cells in vitro. Asian Pac J. Trop Med. 2015; 8 (11): 952–7. https://doi.org/10.1016/j.apjtm.2015.10.006
  36. Tešija Kuna A., Đerek L., Drvar V., Kozmar A., Gugo K. Assessment of antinuclear antibodies (ANA): National recommendations on behalf of the Croatian society of medical biochemistry and laboratory medicine. Biochem medica. 2021; 31 (2): 210–29. https://doi.org/10.11613/BM.2021.020502
  37. Agmon-Levin N., Damoiseaux J., Kallenberg C. et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann Rheum Dis. 2014; 73 (1): 17–23. https://doi.org/10.1136/annrheumdis-2013-203863
  38. Zhou Y., Han T., Chen J. et al. Clinical and Autoimmune Characteristics of Severe and Critical Cases of COVID-19. Clin Transl Sci. 2020; 13 (6): 1077–86. https://doi.org/10.1111/cts.12805
  39. Vlachoyiannopoulos P.G., Magira E., Alexopoulos H. et al. Autoantibodies related to systemic autoimmune rheumatic diseases in severely ill patients with COVID-19. Ann Rheum Dis. 2020; 79 (12): 1661–3. https://doi.org/10.1136/annrheumdis-2020-218009
  40. Nevinsky G.A. Autoimmune Processes in Multiple Sclerosis: Production of Harmful Catalytic Antibodies Associated with Significant Changes in the Hematopoietic Stem Cell Differentiation and Proliferation. In: Trending Topics in Multiple Sclerosis. InTech. 2016. https://doi.org/10.5772/63824
  41. Nevinsky G.A. The extreme diversity of autoantibodies and abzymes against different antigens in patients with various autoimmune diseases. In: Advances in Medicine and Biology. 2021; 1–130.
  42. Ermakov E.A., Smirnova L.P., Parkhomenko T.A. et al. DNA-hydrolysing activity of IgG antibodies from the sera of patients with schizophrenia. Open Biol. 2015; 5 (9): 150064. https://doi.org/10.1098/rsob.150064
  43. Nevinsky G.A. Catalytic Antibodies in Norm and Systemic Lupus Erythematosus. In: Lupus. InTech. 2017. https://doi.org/10.5772/67790
  44. Ermakov E.A., Nevinsky G.A., Buneva V.N. Immunoglobulins with Non-Canonical Functions in Inflammatory and Autoimmune Disease States. Int J. Mol. Sci. 2020; 21 (15): 5392. https://doi.org/10.3390/ijms21155392
  45. Timofeeva A., Sedykh S., Maksimenko L. et al. The Blood of the HIV-Infected Patients Contains κ-IgG, λ-IgG, and Bispecific κλ-IgG, Which Possess DNase and Amylolytic Activity. Life. 2022; 12 (2): 304. https://doi.org/10.3390/life12020304
  46. Wang E.Y., Mao T., Klein J. et al. Diverse functional autoantibodies in patients with COVID-19. Nature. 2021; 595 (7866): 283–8. https://doi.org/10.1038/s41586-021-03631-y
  47. Guilmot A., Maldonado Slootjes S., Sellimi A. et al. Immune-mediated neurological syndromes in SARS-CoV-2-infected patients. J. Neurol. 2021; 268 (3): 751–7. https://doi.org/10.1007/s00415-020-10108-x
  48. Franke C., Ferse C., Kreye J. et al. High frequency of cerebrospinal fluid autoantibodies in COVID-19 patients with neurological symptoms. Brain Behav Immun. 2021; 93: 415–9. https://doi.org/10.1016/j.bbi.2020.12.022
  49. Delamarre L., Gollion C., Grouteau G. et al. COVID-19–associated acute necrotising encephalopathy successfully treated with steroids and polyvalent immunoglobulin with unusual IgG targeting the cerebral fibre network. J. Neurol Neurosurg Psychiatry. 2020; 91 (9): 1004–6. https://doi.org/10.1136/jnnp-2020-323678
  50. Pinto A.A., Carroll L.S., Nar V., Varatharaj A., Galea I. CNS inflammatory vasculopathy with antimyelin oligodendrocyte glycoprotein antibodies in COVID-19. Neurol – Neuroimmunol Neuroinflammation. 2020; 7 (5): e813. https://doi.org/10.1212/NXI.0000000000000813
  51. Jensen C.E., Wilson S., Thombare A., Weiss S., Ma A. Cold agglutinin syndrome as a complication of Covid-19 in two cases. Clin Infect Pract. 2020; 7–8: 100041. https://doi.org/10.1016/j.clinpr.2020.100041
  52. Berzuini A., Bianco C., Paccapelo C. et al. Red cell–bound antibodies and transfusion requirements in hospitalized patients with COVID-19. Blood. 2020; 136 (6): 766–8. https://doi.org/10.1182/blood.2020006695
  53. Casciola-Rosen L., Thiemann D.R., Andrade F. et al. IgM anti-ACE2 autoantibodies in severe COVID-19 activate complement and perturb vascular endothelial function. JCI Insight. 2022; 7 (9). https://doi.org/10.1172/jci.insight.158362