FIBROBLAST GROWTH FACTORS AND THEIR EFFECT ON COGNITIVE FUNCTIONS AND THE COURSE OF CENTRAL NERVOUS SYSTEM DEGENERATIVE DISEASES

DOI: https://doi.org/10.29296/24999490-2022-05-03

B.I. Kuznik(1), E.S. Guseva(2), S.O. Davidov(2), N.I. Chalisova(3, 4)
1-Chita State Medical Academy, Russian Federation, 672000, Trans-Baikal Territory, Chita, st. Gorky 39a;
2-Innovation Clinic Academy of Health, Russian Federation, 672000, Chita, st. Kokhanskogo 13;
3-«St. Petersburg Institute of Bioregulation and Gerontology», Russian Federation, 197110, St. Petersburg, Dynamo Ave., 3;
4-Institute of Physiology, I.P. Pavlov Academy of Sciences, Russian Federation, 199034, St. Petersburg, nab. Makarova, d. 6

Aim of investigation. The study of characteristics of fibroblast growth factors (FGFs), as a man factor FGFd, including 22 structurally connected polypeptides, is necessary for the neuroprotection by the CNS degenerative pathology is presented playing a great role in neuroprotection, cognitive functions state. The factors FGF1, FGF2, FGF8. FGF17, FGF18, FGF20. FGF21 and their receptor (RFGF) in natural conditions plays a great role in nerve system structures preservation, in formation and preservation of long-term memory and other cognitive functions. Methods. Inroduction in old rat experiments the plasma or cerebrospinal fluid of young rats and also of recombinant FGFs. Results. The cerebrospinal fluid of young rats increased the proliferation and differentiation of oligodendrocyte cell-precursors in the hippocampus of old animals and this lead to great closing of cognitive disfunctions and reformed the leaning and memory. Conclusion. FGFs investigation create the basis for the preparation elaboration, which restore cognitive functions by aging and CNS degenerative pathology (Alzheimer and Parkinson diseases, stroke).
Keywords: 
fibroblast growth factors (FGFs), memory, study, cognitive functions, Alzheimer disease, Parkinson disease, stroke

Список литературы: 
  1. Villeda S.A., Luo J., Mosher K.I., Zou B., Britschgi M., Bieri G., Stan T.M., Fainberg N., Ding Z., Eggel A., Lucin K.M., Czirr E., Park J.S., Couillard-Després S., Aigner L., Li G., Peskind E.R., Kaye J.A., Quinn J.F., Galasko D.R., Xie X.S., Rando T.A., Wyss-Coray T. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature. 2011; 477: 90–4.
  2. Loffredo F.S., Steinhauser M.L., Steven M., Gannon J., Pancoast J.R., Yalamanchi P., Sinha M., Dall’Osso C., Khong D., Shadrach J.L., Miller C.M., Singer B.S., Stewart A., Psychogios N., Gerszten R.E., Hartigan A.J., Kim M.J., Serwold T., Wagers A.J., Lee R.T. Growth Differentiation Factor 11 Is a Circulating Factor that Reverses Age-Related Cardiac Hypertrophy. Cell. 2013; 153 (4): 828–39. DOI: 10.1016/j.cell.2013.04.015.
  3. Iram T., Kern F., Kaur A., Myneni S., Morningstar A.R., Shin H., Garcia M.A., Yerra L., Palovics R., Yang A.C., Hahn O., Lu N., Shuken S.R., Haney M.S., Lehallier B., Iyer M., Luo J.., Zetterberg H, Keller A., Zuchero J.B., Wyss-Coray T. Young CSF restores oligodendrogenesis and memory in aged mice via Fgf17. Nature. 2022; 605 (7910): 509–15. DOI: 10.1038/s41586-022-04722-0.
  4. Xiong X.Y., Semyanov A., Tang Y. Signal Restored oligodendrogenesis by fibroblast growth factor 17: molecular mechanism for rejuvenating ageing-related memory deficit. Transduct Target Ther. 2022; 7 (1): 237–43. DOI: 10.1038/s41392-022-01092-x.
  5. Liu Yiqiu, Deng Junyu, Liu Ye, Li Wei, Nie Xuqiang. FGF, Mechanism of Action, Role in Parkinson’s Disease. Therapeutics. 2021; 12: 675725. DOI: 10.3389fphar.2021.675725.
  6. Kim J.H., Hwang K.H., Park K.S., Kong I.D., Cha S.K.. Biological role of anti-aging protein Klotho. J. Lifestyle Med. 2015; 5 (1): 1–6. DOI: 10.15280/jlm.2015.5.1.1.
  7. Oomura Y., Sasaki K., Suzuki L. Tooyama I., Hanai K., Kimura H., Hori T. A single pre-training glucose injection induces memory facilitation in rodents performing various tasks: contribution of acidic fibroblast growth factor. Neuroscience. 1998; 85 (3): 785–94. DOI: 10.1016/s0306-4522(97)00630-1.
  8. Pereda-Pérez I., Valencia A., Baliyan S., Núñez Á., Sanz-Garcia A., Zamora B., Rodriguez-Fernández R., Esteban J.A., Venero C. Systemic administration of a fibroblast growth factor receptor 1 agonist rescues the cognitive deficit in aged socially isolated rats. Neurobiol Aging. 2019; 78: 155–65. DOI: 10.1016/j.neurobiolaging.
  9. Gomez-Pinilla F., So V., Kesslak J.P.. Spatial learning and physical activity contribute to the induction of fibroblast growth factor: neural substrates for increased cognition associated with exercise.33 Neuroscience; 1998, 85(1):53-61. DOI: 10.1016/s0306-4522(97)00576-9.
  10. Lu Y., Sareddy G.R., Wang J., Zhang Q., Tang F.L., Pratap U.P., Tekmal R.R., Vadlamudi R.K., Neuron-Derived Estrogen Is Critical for Astrocyte Activation and Neuroprotection of the Ischemic Brain. J. Neurosci. 2020; 40 (38): 7355–74. DOI: 10.1523/JNEUROSCI.0115-20.2020
  11. Even-Chen O., Barak S. The role of fibroblast growth factor 2 in drug addiction. Eur. J. Neurosci. 2019; 50 (3): 2552–61. DOI: 10.1111/ejn.14133.
  12. Zechel S., Werner S., Unsicker K., von Bohlen, Halbach O. Expression and functions of fibroblast growth factor 2 (FGF-2) in hippocampal formation. Neuroscientist. 2010; 16 (4): 357–73. DOI: 10.1177/1073858410371513.
  13. Cronska-Peski M., Goncalves J., Herbert J. Enriched Environment Promotes Adult Hippocampal Neurogenesis through FGFRs. Neurosci. 2021; 41 (13): 2899–910. DOI: 10.1523/JNEUROSCI.
  14. Garrett L., Becker L., Rozman J., Puk O., Stoeger T., Yildirim A.Ö., Bohla A., Eickelberg O., Hans W., Prehn C., Adamski J., Klopstock T., Rácz I., Zimmer A., Klingenspor M., Fuchs H., Gailus-Durner V., Wurst W., Hrabě de Angelis M., Graw J., Hölter S.M. Fgf9 Y162C Mutation Alters Information Processing and Social Memory in Mice. Mol. Neurobiol. 2018; 55 (6): 4580–95. DOI: 10.1007/s12035-017-0659-3.
  15. Di Re J., Wadsworth P.A., Laezza F. Intracellular Fibroblast Growth Factor 14: Emerging Risk Factor for Brain Disorders Front. Cell Neurosci. 2017; 11: 103. DOI: 10.3389/fncel.2017.00103.
  16. Lemaitre H., Mattay V.S., Sambataro F. Genetic variation in FGF20 modulates hippocampal biology. Neurosci. 2010; 30 (17): 5992–7. DOI: 10.1523/JNEUROSCI.
  17. Omileke F., Ishiwata S., Matsuo J., Yoshida F., Hidese S., Hattori K., Kunugi H. Possible associations between plasma fibroblast growth factor 21 levels and cognition in bipolar disorder. Neuropsychopharmacol Rep. 2020; 40 (2): 175–81. DOI: 10.1002/npr2.12102.
  18. Zhang Y., Xie Y., Berglund E.D., Coate K.C., He T.T., Katafuchi T., Xiao G., Potthoff M.J., Wei W., Wan Y., Yu R.T., Evans R.M., Kliewer S.A., Mangelsdorf D.J. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife. 2012; 1: 00065. DOI: 10.7554/eLife.00065.
  19. Yu Y., Bai F., Wang W., Liu Y., Yuan Q., Qu S., Zhang T., Tian G., Li S., Li D., Ren G. Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation. Pharmacol. Biochem. Bechav. 2015; 133: 122–31. DOI: 1016/j.pbb.2015.03.020.
  20. Leng Y., Wang Z., Tsai L.K., Leeds P., Fessler E.B., Wang J., Chuang D.M. FGF-21, a novel metabolic regulator, has a robust neuroprotective role and is markedly elevated in neurons by mood stabilizers. Mol. Psychiatry. 2015; 20 (2): 215–23. DOI: 10.1038/mp.2013.192
  21. Xu J., Wu F., Li Y., Wang F., Lin W., Qian S., Li H., Fan Y., Li H.., Chen L, Xu H., Chen L., Liu Y., Li X., He J. Fibroblast growth factor 21 associating with serotonin and dopamine in the cerebrospinal fluid predicts impulsivity in healthy subjects. MC Neurosci. 2021; 22 (1): 68. DOI: 10.1186/s12868-021-00676-7.
  22. Yu Y., Bai F., Wang W., Liu Y., Yuan Q., Qu S., Zhang T., Tian G., Li S.., Li D., Ren G. Fibroblast growth factor 21 protects mouse brain against D-galactose induced aging via suppression of oxidative stress response and advanced glycation end products formation. Pharmacol. Biochem. Behav. 2015; 133. DOI: 10.1016/j.pbb.2015.03.020
  23. Ren B., Wang L., Shi L., Jin X., Liu Y., Liu R.H., Yin F., Cadenas E., Dai X., Liu Z., Liu X. Methionine restriction alleviates age-associated cognitive decline via fibroblast growth factor 21. Redox Biol. 2021; 41: 101940. DOI: 10.1016/j.redox.2021.101940.
  24. Sa-Nguanmoo P., Tanajak P., Kerdphoo S., Jaiwongkam T., Wang X., Liang G., Li X., Jiang C., Pratchayasakul W., Chattipakorn N., Chattipakorn S.C. FGF21 and DPP-4 inhibitor equally prevents cognitive decline in obese rats. Biomed Pharmacother. 2018; 97: 1663–72. DOI: 10.1016/j.biopha.2017.12.021.
  25. Hanks L.J., Gutiérrez O.M., Bamman M.M., Ashraf A., McCormick K.L., Casazza K. Circulating levels of fibroblast growth factor-21 increase with age independently of body composition indices among healthy individuals. J. Clin. Transl. Endocrinol. 2015; 2 (2): 77–82. DOI: 10.1016/j.jcte.2015.02.001.
  26. Laszczyk A.M., Nettles D., Pollock T.A., Fox S., Garcia M.L., Wang J., Quarles L.D., King G.D. FGF-23 Deficiency Impairs Hippocampal-Dependent Cognitive Function. eNeuro. 2019; 22; 6 (2): 0469. DOI: 10.1523/ENEURO.0469-18.2019.
  27. Drew D.A., Tighiouart H., Scott T.M., Lou K.V., Fan L., Shaffi K., Weiner D.E., Sarnak MJ. FGF-23 and cognitive performance in hemodialysis patients. Hemodial Int. 2014; 18 (1): 78–86. DOI: 10.1111/hdi.12100.
  28. Li H., Cao Z., Xu J. Cerebrospinal fluid FGF23 levels correlate with a measure of impulsivity. Psychiatry Res. 2018; 264: 394–97. DOI: 10.1016/j.psychres.2018.04.032.
  29. Haffner D., Leifheit-Nestler M. Extrarenal effects of FGF23. Рediatr Nephrol. 2017; 32 (5): 753–65. DOI: 10.1007/s00467-016-3505-3.
  30. Gonzalez-Reimers E., Romero-Acevedo L., Espelosin-Ortega E., Martin-González M.C., Quintero-Platt G.., Abreu-González P, José de-la-Vega-Prieto M.., Martinez-Martinez D, Santolaria-Fernández F. Soluble Klotho and Brain Atrophy in Alcoholism. Alcohol. 2018; 1; 53 (5): 503–10. DOI: 10.1093/alcalc/agy037.
  31. Alam R., Mrad Y., Hammoud H., Saker Z., Fares Y., Estephan E., Bahmad H.F., Harati H., Nabha S. New insights into the role of fibroblast growth factors in Alzheimer’s disease. Mol. Biol. Rep. 2022; 49 (2): 1413–27. DOI: 10.1007/s11033-021-06890-0.
  32. Stopa E.G., Gonzalez A.M., Chorsky R., Corona R..J, Alvarez J., Bird E.D., Baird A. Basic fibroblast growth factor in Alzheimer’s disease. Biochem. Biophys. Res. Commun. 1990; 171 (2): 690–6. DOI: 10.1016/0006-291x(90)91201-3.
  33. Di Re J., Wadsworth P.A., Laezza F. Intracellular Fibroblast Growth Factor 14: Emerging Risk Factor for Brain Disorders. Front Cell Neurosci. 2017; 11: 103. DOI: 10.3389/fncel.2017.00103.
  34. Conte M., Sabbatinelli J., Chiariello A., Martucci M., Santoro A., Monti D., Arcaro M., Galimberti D., Scarpini E., Bonfigli A.R., Giuliani A., Olivieri F., Franceschi C., Salvioli S. Disease-specific plasma levels of mitokines FGF21, GDF15, and Humanin in type II diabetes and Alzheimer’s disease in comparison with healthy aging. Geroscience. 2021; 43 (2): 985–1001. DOI: 10.1007/s11357-020-00287-w.
  35. Kakoty V., K.C.S., Tang R.D., Yang C.H., Dubey S.K., Taliyan R. Fibroblast growth factor 21 and autophagy: A complex interplay in Parkinson disease. Biomed Pharmacother. 2020; 127: 110145. DOI: 10.1016/j.biopha.2020.11014537.
  36. McGrath E.R., Himali J.J., Levy D., Conner S.C., Pase M.P., Abraham C.R., Courchesne P., Satizabal C.L., Vasan R.S., Beiser A.S., Seshadri S. Circulating fibroblast growth factor 23 levels and incident dementia: The Framingham heart study. PLoS One. 2019; 14 (3): e0213321. DOI: 10.1371/journal.pone.0213321
  37. Jinfeng L., Yunliang W., Xinshan L., Shanshan W., Chunyang X.., Peng X, Xiaopeng Y., Zhixiu X., Honglei Y., Xia C., Haifeng D., Bingzhen C. The Effect of MSCs Derived from the Human Umbilical Cord Transduced by Fibroblast Growth Factor-20 on Parkinson’s Disease. Stem Cell Int. 2016; 5016768. DOI:10.1155/2016/5016768.
  38. Fletcher E.J.R., Jamieson A.D., Williams G. Targeted Repositioning Identifies Drugs that Increase Fibroblast Growth Factor 20 Production and Protect against 6-Hydroxydopamine-Induced Nigral Cell Loss in Rats. Sci. Report. 2019; 9 (1): 8336. DOI:10.1038/s41598-019-44803-1.
  39. Hsuchou H., Pan W., Kastin A. J. The fasting polypeptide FGF21 can enter brain from blood. Peptides. 2007; 28 (12): 2382–6. DOI: 10.1016/j.peptides.2007.10.007
  40. Yang C., Wang W., Deng P., Li C., Zhao L., Gao H. Front Fibroblast Growth Factor 21 Modulates Microglial Polarization That Attenuates Neurodegeneration in Mice and Cellular Models of Parkinson’s Disease. Aging Neurosci. 2021; 13: 778527. DOI: 10.3389/fnagi. 2021.
  41. Celik Y., Resitoglu B., Komur M., Polat A.., Erdogan S, Alakaya M., Beydagi H. F. Fibroblast growth factor 2 improves cognitive function in neonatal rats with hypoxic ischaemic brain injury. Med Assoc. 2016; 66 (5): 549–53.PMID: 27183934
  42. Çelik Y., Atici A., Beydaği H., Reşitoğlu B., Yilmaz N., Ün İ., Polat A., Bağdatoğlu C., Dağtekin A., Sungur M.A., Tiftik N. The effects of fibroblast growth factor-2 and pluripotent astrocytic stem cells on cognitive function in a rat model of neonatal hypoxic-ischemic brain injury. Matern. Fetal Neonatal Med. 2016; 29 (13): 2199–204. DOI: 10.3109/14767058.2015.1080683
  43. Li A., Tian J., Yang J., Zhou Z., Zhou W. Expression of fibroblast growth factor 9 and its receptors in the dentate gyrus of hippocampus in poststroke depression rats. Neuroreport. 2021; 32 (4): 321–25. DOI: 10.1097/WNR.0000000000001591.
  44. Li Y., Lin M., Lin P., Xia N., Li X., Lin L., Yang Y. Maternal High-Fat Diet Alters the Characteristics of Astrocytes and Worsens the Outcome of Stroke in Rat Offspring, Which Improves After FGF21 Administration. Front Cell Dev. Biol. 2022; 9: 731698. DOI: 10.3389/fcell.2021.731698.
  45. Dordoe C., Chen K., Huang W., Chen J., Hu J., Wang X., Lin L. Roles of Fibroblast Growth Factors and Their Therapeutic Potential in Treatment of Ischemic Stroke. Front Pharmacol. 2021; 12: 671131. DOI: 10.3389/fphar.2021.671131.
  46. Ellsworth J.L., Garcia R., Yu J., Kindy M.S. Fibroblast growth factor-18 reduced infarct volumes and behavioral deficits after transient occlusion of the middle cerebral artery in rats. Stroke. 2003; 34 (6): 1507–12. DOI: 10.1161/01.STR.0000071760.66720.5F.
  47. Mamtilahun M., Jiang L., Song Y., Shi X., Liu C., Jiang Y., Deng L., Zheng H., Shen H., Li Y., Zhang Z., Wang Y., Tang Y., Yang G.Y. Plasma from healthy donors protects blood-brain barrier integrity via FGF21 and improves the recovery in a mouse model of cerebral ischaemia. Stroke Vasc Neurol. 2021; 6 (4): 561–71. DOI: 10.1136/svn-2020-000774.
  48. Jiang Y., Han J., Li Y., Wu Y., Liu N., Shi S.X., Lin L., Yuan J., Wang S., Ning M.M., Dumont A.S., Wang X. Delayed rFGF21 Administration Improves Cerebrovascular Remodeling and White Matter Repair After Focal Stroke in Diabetic Mice. Stroke Res. 2022; 13 (2): 311–25. DOI: 10.1007/s12975-021-00941-1.
  49. Acquaviva J., Abdelhady H.G.., Razzaque M.S. Phosphate Dysregulation and Neurocognitive Sequelae. Adv. Exp. Med. Biol. 2022; 1362: 151–60. DOI: 10.1007/978-3-030-91623-7_13.
  50. Кузник Б.И., Хавинсон В.Х., Линькова Н.С., Рыжак Г.А., Саль Т.С., Трофимова С.В. Факторы роста фибробластов fgf19, fgf21, fgf23 как эндокринные регуляторы физиологических функций и геропротекторы. Эпигенетические механизмы регуляции. Успехи современной биологии. 2017; 137 (1): 84–99. [Kuznik B. I. , Khavinson Kh.V, Linkova N.S., Righak G.A., Sal T.S., Trofimova S.V. fgf19, fgf21, fgf23 Fidroblast growth factors fgf19, fgf21, fgf23 as endocrin regulators of physiological functions and as geroprotectors. Epigenetic mechanisms Advances of current biology. 2017; 137 (1): 84–99. (in Russian)].