MITOCHONDRIAL TRANSPORT MOLECULES AS THE POTENTIAL OBJECTS FOR TARGETED THERAPY

DOI: https://doi.org/10.29296/24999490-2022-06-01

M.A. Paltzev(1), T.S. Zubareva(2, 3), A.S. Zubareva(2, 3), D.O. Leontyeva(2, 3), E.S. Mironova2, 3, I.M. Kvetnoy(2, 4)
1-Lomonosov Moscow State University, Leninskie gory, 1, Moscow, 119991, Russian Federation;
2-St. Petersburg Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation,
Ligovsky prospect, 2–4, St. Petersburg, 191036, Russian Federation;
3-Saint Petersburg Institute of Bioregulation and Gerontology, Dynamo pr., 3, Saint Petersburg, 197110, Russian Federation;
4-Saint-Petersburg State University, University Emb., 7–9, St. Petersburg, 199034, Russian Federation

Mitochondria are the active cell organelles whose structures (the membrane in particular) express a large number of signaling molecules, proteins mainly, that play an important regulatory role in cell active functioning. The biological activity of mitochondrial proteins suggests their key role as the objects in targeted therapy of mitochondrial functioning processes impaired as the result of the development of infectious, neurodegenerative, stress or pathological process of various etiologies and pathogenesis. Mitochondrial regulatory proteins have recently been of even greater interest and relevance for research, due to their established participation in the pathogenesis of viral infection, oncogenesis and metabolic dysfunctions. Material and methods. The analysis of the properties of the key signaling molecules of mitochondrial membranes that regulate the transport function of protein compounds in normal and under various pathological conditions was carried out. Conclusion. The biological properties of the key mitochondrial membrane proteins and their role in the pathogenesis make it relevant to study their verification as possible objects for targeted pharmacotherapy of socially significant diseases based on mitochondrial dysfunction
Keywords: 
mitochondria, mitochondrial transport, targeted therapy, target, Tom70, Tom20, VDAC, DRP1, TOM complex, apoptosis, protein transport, mitochondrial membrane, matrix, signaling

Список литературы: 
  1. Miller B., Silverstein A., Flores M. et al. Host mitochondrial transcriptome response to SARSCoV2 in multiple cell models and clinical samples. Nature Reports. 2021; 11: 3. https://doi.org/10.1038/s41598-020-79552-z.
  2. Agnello M., Morici G., Rinaldi A.M. A method for measuring mitochondrial mass and activity. Cytotechnology. 2008; 56 (3): 145–9.
  3. Anderson A.J., Jackson T.D., Stojanovski D. Mitochondria-hubs for regulating cellular biochemistry: emerging concepts and networks Biology, Medicine. Open Biology. 2019; 9 (8): 1–15. https://doi.org/10.1098/rsob.190126.
  4. Ernster L., Schatz G. Mitochondria: A Historical Review. J. Cell Biol. 1981; 91: 227–55.
  5. Pfanner N., Douglas M.G., Endo T., Hoogenraad N.J., Jensen R.E., Meijer M., Neupert W., Schatz G., Schmitz U.K., Shore G.C. Uniform nomenclature for the protein transport machinery of the mitochondrial membranes. Trends Biochem. Sci. 1996; 21: 51–2.
  6. Tucker K., Park E. Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution. Nat. Struct. Mol. Biol. 2019; 26: 1158–66.
  7. Wang P., Wang D., Yang Y., Hou J., Wan J., Ran F., Dai X., Zhou P., Yang Y. Tom70 protects against diabetic cardiomyopathy through its antioxidant and antiapoptotic properties. Hypertens Res. 2020; 43 (10): 1047–56.
  8. Wiedemann N., Pfanner N. Mitochondrial Machineries for Protein Import and Assembly. Annu. Rev. Biochem. 2017; 86: 685–714.
  9. Neupert W., Herrmann J.M. Translocation of proteins into mitochondria. Annu. Rev. Biochem. 2007; 76: 723–49.
  10. Shiota T., Imai K., Qiu J., Hewitt V.L., Tan K., Shen H., Sakiyama N., Fukasawa Y., Hayat S., Kamiya M. et al. Molecular architecture of the active mitochondrial protein gate. Science. 2015; 349: 3–8.
  11. Pfanner N., Warscheid B., Wiedemann N. Mitochondrial proteins: From biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 2019; 20: 267–84.
  12. Di Maio R., Barrett P.J., Hoffman E.K., Barrett C.W., Zharikov A., Borah A., Hu X., McCoy J., ChuCh T., Burton E.A., Hastings T.G., Greenamyre T. α-Synuclein binds to TOM20 and inhibits mitochondrial protein import in Parkinson’s disease. J. Sci Transl Med. 2016. https://doi.org/10.1126/scitranslmed.aaf3634.
  13. Cooper H.A., Eguchi S. Inhibition of mitochondrial fission as a novel therapeutic strategy to reduce mortality upon myocardial infarction. Clin Sci. 2018; 132: 2163–7.
  14. Givvimani S., Pushpakumar S.B., Metreveli N., Veeranki S., Kundu S., Tyagi S.C. Role of mitochondrial fission and fusion in cardiomyocyte contractility. Int. J. Cardiol. 2015; 187: 325–33.
  15. Hira S., Packialakshmi B., Tang E., Zhou X. Dexamethasone upregulates mitochondrial Tom20, Tom70 and MnSOD through SGK1 in the kidney cells. J. Physiol. Biochem. 2020; 77: 1–11. https://doi.org/10.1007/s13105-020-00773-x.
  16. Jhun B.S., O-Uchi J., Adaniya S.M., Mancini T.J., Cao J.L., King E. et al. Protein kinase D activation induces mitochondrial fragmentation and dysfunction in cardiomyocytes. J. Physiol. 2018; 596: 827–55.
  17. Lazarou M., Jin S.M., Kane L.A., Youle R.J. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell. 2012; 22: 320–33.
  18. Klapper-Goldstein H., Verma A., Elyagon S., Gillis R., Murninkas M., Pittala S., Paul A., Shoshan-Barmatz V. VDAC1 overexpression in the diseased myocardium of humans and rats and the effect of VDAC1-interacting compound on atrial fibrosis induced by hyperaldosteronism. 2020; 10: 22101.
  19. Poot М., Zhang Y.Z., Krämer J.A., Wells K.S., Jones L.J., Hanzel D.K., Lugade A.G., Singer V.L., Haugland R.P. Analysis of mitochondrial morphology and function with novel fixable fluorescent stains. J. Histochem Cytochem. 1996; 44 (12): 1363–72.
  20. Dionisio P.E.A., Oliveira S.R., Amaral J.S.J.D., Rodrigues C.M.P. Loss of microglial parkin inhibits necroptosis and contributes to neuroinflammation. Mol. Neurobiol. 2018; 63 (4): 2990–3004.
  21. Atkins K., Dasgupta A., Chen K.H., Mewburn J., Archer S.L. The role of Drp1 adaptor proteins MiD49 and MiD51 in mitochondrial fission: implications for human disease. Clin. Sci. (Lond.). 2016; 130 (21): 1861–74.
  22. Sim C.H., Gabriel K., Mills R.D., Culvenor J.G., Cheng H.C. Analysis of the regulatory and catalytic domains of PTEN-induced kinase-1 (PINK1). Hum. Mutat. 2012; 33: 1408–22.
  23. Sun L., Shen R., Agnihotri S.K., Chen Y., Huang Z., Büeler H. Lack of PINK1 alters glia innate immune responses and enhances inflammation-induced, nitric oxide-mediated neuron death. Sci Rep. 2018; 8 (1): 383.
  24. Valentin-Vega Y.A., Maclean K.H., Tait-Mulder J., Milasta S., Steeves M., Dorsey F.C., Cleveland J.L., Green D.R., Kastan M.B. Mitochondrial dysfunction in ataxia-telangiectasia. Blood. 2012; 119 (6): 1490–500.
  25. Wang H., Ni H.-M., Chao X., Ma X., Rodriguez Y. A., Chavan H., Wang Sh., Krishnamurthy P., Dobrowsky R., Xu D.-X., Jaeschke H., Ding W.-X. Double deletion of PINK1 and Parkin impairs hepatic mitophagy and exacerbates acetaminophen-induced liver injury in mice. Redox Biol. 2019. https://doi.org/10.1016.
  26. Tarnawski A.S., Ahluwalia A. Increased susceptibility of aging gastric mucosa to injury and delayed healing: Clinical implications. World J. Gastroenterol. 2018; 24 (42): 4721–7.
  27. Klionsky D.J., Saltiel A.R. Autophagy works out. Cell Metab. 2012; 15 (3): 273–4.
  28. Martinez-Reyes I., Chandel N.S. Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 2020; 11: 102.
  29. Fang D., Maldonado E.N. VDAC Regulation: A Mitochondrial Target to Stop Cell Proliferation. Adv. Cancer Res. 2018; 138: 41–69.
  30. Pittala S., Krelin Y., Kuperman Y., Shoshan-Barmatz V. A Mitochondrial VDAC1-Based Peptide Greatly Suppresses Steatosis and NASH-Associated Pathologies in a Mouse Model.Mol. Ther. 2019; 27: 1848–62.
  31. Zhou H., Zhang Y., Hu S., Shi C., Zhu P., Ma Q., et al. Melatonin protects cardiac microvasculature against ischemia/reperfusion injury via suppression of mitochondrial fission-VDAC1-HK2-mPTP-mitophagy axis. J. Pineal Res. 2017; 63: 12413. https://doi.org/10.1111/jpi.12413.
  32. Shoshan-Barmatz V., Nahon-Crystal E., Shteinfer-Kuzmine A., Gupta R. VDAC1, mitochondrial dysfunction, and Alzheimer’s disease. Pharmacol. Res. 2018; 131: 87–101.
  33. Zhang E., Al-Amily I., Mohammed S., Luan C., Asplund O., Ahmed M., Ben-Hail D., Ye Y., Soni A., Groop L. et al. Preserving Insulin Secretion in Diabetes by Inhibiting VDAC1 Overexpression and Surface Translocation in β Cells. Cell Metabol. 2019; 29: 64–77.
  34. Brand C.S., Tan V.P., Brown J.H., Miyamoto S. RhoA regulates Drp1 mediated mitochondrial fission through ROCK to protect cardiomyocytes. Cell Signal. 2018; 50: 48–57.
  35. Qi Z., Huang Z., Xie F., Chen L. Dynamin-related protein 1: a critical protein in the pathogenesis of neural system dysfunctions and neurodegenerative diseases. J. Cell. Physiol. 2019; 234: 10032–46.
  36. Jin J., Wei X.X., ZhiX L., WangX H., Meng D. Drp1-dependent mitochondrial fission in cardiovascular disease. Acta Pharmacol Sin. 2020. https://doi.org/10.1038/s41401-020-00518-y.
  37. DuBoff B., Gotz J., Feany M.B. Tau promotes neurodegeneration via DRP1 mislocalization in vivo. Neuron. 2012; 75: 618–32.
  38. Tian L., Neuber-Hess M., Mewburn J., Dasgupta A., Dunham-Snary K., Wu D., et al. Ischemia-induced Drp1 and Fis1-mediated mitochondrial fission and right ventricular dysfunction in pulmonary hypertension. J. Mol. Med. 2017; 95: 381–93.
  39. Zhang L., Yang F., Li Y., Cao H., Huang A., Zhuang Y., Zhang C., Hu G., Mao Y., Luo J., Xing C. The protection of selenium against cadmium-induced mitophagy via modulating nuclear xenobiotic receptors response and oxidative stress in the liver of rabbits. Environ Pollut. 2021; 285: 117301. https://doi.org/10.1016/j.envpol.2021.117301.
  40. Shoshan-Barmatz V., Krelin Y., Shteinfer-Kuzmine A. VDAC1 functions in Ca2+homeostasis and cell life and death in health and disease. Cell Calcium. 2018; 69: 81–100.
  41. Sliter D.A., Martinez J., Hao L., Chen X., Sun N., Fischer T.D., Burman J.L., Li Y., Zhang Z., Narendra D.P., Cai H., Borsche M., Klein C., Youle R.J. Parkin and PINK1 mitigate STING-induced inflammation. Nature. 2018; 561: 258–62.