SIGNALING MOLECULES OF TUMOR TRANSFORMATION IN TUBERCULOSIS

DOI: https://doi.org/10.29296/24999490-2022-06-02

Yu.S. Krylova(1, 2), G.G. Kudriashov(1), A.O. Nefedov(1), M.A. Dokhov(1, 3), A.O. Zakharchenko(4), P.K. Yablonskii(1, 4)
1-Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Healthcare of the Russian Federation,
Ligovskij avenue, 2–4, Saint-Petersburg, 191036, Russian Federation;
2-Pavlov First Saint Petersburg State Medical University, Street L’va Tolstogo, 6–8, Saint-Petersburg, 197022, Russian Federation;
3-St. Petersburg State Pediatric Medical University, Litovskaya street, 2, Saint-Petersburg, 194100, Russian Federation;
4-Saint-Petersburg University, Universitetskaya Embankment, 7–9, Saint-Petersburg, 199034, Russian Federation

The review is devoted to the analysis of modern ideas about the molecular mechanisms of tumor transformation in tuberculosis; signal molecules are described, which may be biomarkers and targets for optimizing personalized diagnosis and targeted therapy of the disease. The aim of the study was to determine the current state of the issue and characterize the molecular markers of tumor transformation in tuberculosis. Material and methods: analysis and systematization of scientific literature over the past 10 years was performed in the PubMed, Scopus and Google Scholar databases. Results: particular attention in the review is given to the factors contributing to tumor transformation in tuberculosis. Both direct effects of Mycobacterium tuberculosis on proliferation and immune response, and indirect mechanisms of action on cells involved in inflammation processes are considered. The choice of signaling molecules to optimize the personalized diagnosis of tumor transformation in tuberculosis is substantiated.
Keywords: 
tuberculosis, tumor transformation, signaling molecules, personalized diagnostics

Список литературы: 
  1. Gupta P.K., Tripathi D., Kulkarni S., Rajan M.G. Mycobacterium tuberculosis H37Rv infected THP-1 cells induce epithelial mesenchymal transition (EMT) in lung adenocarcinoma epithelial cell line (A549). Cell Immunol. 2016; 300: 33–40. DOI: 10.1016/j.cellimm.2015.11.007.
  2. Budisan L., Zanoaga O., Braicu C., Pirlog R., Covaliu B., Esanu V., Korban S.S., Berindan-Neagoe I. Links between Infections, Lung Cancer, and the Immune System. Int. J. Mol. Sci. 2021; 22 (17): 9394. DOI: 10.3390/ijms22179394.
  3. Fol M., Koziński P., Kulesza J., Białecki P., Druszczyńska M. Dual Nature of Relationship between Mycobacteria and Cancer. Int. J. Mol. Sci. 2021; 22 (15): 8332. DOI: 10.3390/ijms22158332.
  4. Bickett T.E., Karam S.D. Tuberculosis-Cancer Parallels in Immune Response Regulation. Int. J. Mol. Sci. 2020; 21 (17): 6136. DOI: 10.3390/ijms21176136.
  5. Nalbandian A., Yan B.S., Pichugin A., Bronson R.T., Kramnik I. Lung carcinogenesis induced by chronic tuberculosis infection: the experimental model and genetic control. Oncogene. 2009; 28 (17): 1928–38. DOI: 10.1038/onc.2009.32. Epub 2009 Mar 30.
  6. Liang H.Y., Li X.L., Yu X.S., Guan P., Yin Z.H., He Q.C., Zhou B.S. Facts and fiction of the relationship between preexisting tuberculosis and lung cancer risk: a systematic review. Int. J. Cancer. 2009; 125 (12): 2936–44. DOI: 10.1002/ijc.24636.
  7. Xiong K., Sun W., He Y., Fan L. Advances in molecular mechanisms of interaction between Mycobacterium tuberculosis and lung cancer: a narrative review. Transl Lung Cancer Res. 2021; 10 (10): 4012–26. DOI: 10.21037/tlcr-21-465.
  8. Casalino-Matsuda S.M., Monzón M.E., Forteza R.M. Epidermal growth factor receptor activation by epidermal growth factor mediates oxidant-induced goblet cell metaplasia in human airway epithelium. Am. J. Respir Cell. Mol. Biol. 2006; 34 (5): 581–91. DOI: 10.1165/rcmb.2005-0386OC.
  9. Chang C.H., Lee C.H., Ho C.C., Wang J.Y., Yu C.J. Gender-based impact of epidermal growth factor receptor mutation in patients with nonsmall cell lung cancer and previous tuberculosis. Medicine (Baltimore). 2015; 94 (4): e444. DOI: 10.1097/MD.0000000000000444.
  10. Fol M., Koziński P., Kulesza J., Białecki P., Druszczyńska M. Dual Nature of Relationship between Mycobacteria and Cancer. Int. J. Mol. Sci. 2021; 22 (15): 8332. DOI: 10.3390/ijms22158332.
  11. Cao S., Li J., Lu J., Zhong R., Zhong H. Mycobacterium tuberculosis antigens repress Th1 immune response suppression and promotes lung cancer metastasis through PD-1/PDl-1 signaling pathway. Cell Death Dis. 2019; 10 (2): 44. DOI: 10.1038/s41419-018-1237-y.
  12. Woo S.J., Kim Y., Jung H., Lee J.J., Hong J.Y. Tuberculous Fibrosis Enhances Tumorigenic Potential via the NOX4-Autophagy Axis. Cancers (Basel). 2021; 13 (4): 687. DOI: 10.3390/cancers13040687.
  13. Forte M., Palmerio S., Yee D., Frati G., Sciarretta S. Functional Role of Nox4 in Autophagy. Adv Exp. Med. Biol. 2017; 982: 307–26. DOI: 10.1007/978-3-319-55330-6_16.
  14. Wang J., Ge P., Qiang L., Tian F., Zhao D., Chai Q., Zhu M., Zhou R., Meng G., Iwakura Y., Gao G.F., Liu C.H. The mycobacterial phosphatase PtpA regulates the expression of host genes and promotes cell proliferation. Nat Commun. 2017; 8 (1): 244. DOI: 10.1038/s41467-017-00279-z.
  15. Chai Q., Lu Z., Liu Z., Zhong Y., Zhang F., Qiu C., Li B., Wang J., Zhang L., Pang Y., Liu C.H. Lung gene expression signatures suggest pathogenic links and molecular markers for pulmonary tuberculosis, adenocarcinoma and sarcoidosis. Commun Biol. 2020; 3 (1): 604. DOI: 10.1038/s42003-020-01318-0.
  16. Molina-Romero C., Arrieta O., Hernández-Pando R. Tuberculosis and lung cancer. Salud Publica Mex. 2019; 61 (3): 286–91. English. DOI: 10.21149/10090.
  17. Arrieta O., Molina-Romero C., Cornejo-Granados F., Marquina-Castillo B., Avilés-Salas A., López-Leal G., Cardona A.F., Ortega-Gómez A., Orozco-Morales M., Ochoa-Leyva A., Hernandez-Pando R. Clinical and pathological characteristics associated with the presence of the IS6110 Mycobacterim tuberculosis transposon in neoplastic cells from non-small cell lung cancer patients. Sci Rep. 2022; 12 (1): 2210. DOI: 10.1038/s41598-022-05749-z.