THE GENDER FACTOR EFFECT FOR THE EDOCRYNE FUNCTION OF MESENCHYMAL TISSUES IN CHILDREN AND ADOLESCENT

DOI: https://doi.org/10.29296/24999490-2023-02-08

A.V. Shestopalov(1–3), V.V. Davydov(1), G.T. Tumanyan(5), D.V. Savchuk(5), E.D. Teplyakova(5),
V.F. Shin(5), T.V. Grigorieva(4), A.V. Laikov(4), O.V. Borisenko(1), S.A. Roumiantsev(1, 2)
1-Pirogov Russian National Research Medical University, Ostrovityanova st., 1, Moscow, 117997, Russian Federation;
2-Center of Digital and Translational Biomedicine «Сenter of Molecular Health»,
Nakhimovski av., 32, 1, Moscow, 117218, Russian Federation;
3-Dmitry Rogachev National Medical Research Center of Pediatric Hematology,
Oncology and Immunology, Samory Mashela st., 1, Moscow, 117997, Russian Federation;
4-Kazan Federal University, Kremlyovskaya str., 18, Kazan, 420008, Russian Federation;
5-The Rostov State Medical University, Nakhichevansky st., 29, Rostov-na-Donu, 344022, Russian Federation

Introduction. There is take place increasing in the incidence of obesity among children and adolescents in the world. However, until now there are not exist clear views about mechanisms of that phenomenon. The aim of study. The purpose of that work is comparative analysis of metabolic status, as well as content of adipokines, myokines and some hormones in the blood of children and adolescents with obesity, dependent of gender. Methods. Quantification of the adipokines, myokines and hormones was carried out using multiplex ELISA. Results. Studies have revealed gender differences in the level of certain hormones, adipokines, and myokines, suggesting the appearance of features in the development of obesity in boys and girls. Obese girl experience compensatory changes that help limit manifestation of insulin resistance and lipotoxicity, as well as cardioprotective and neuroprotective effects. This prevents them from serious complications from the cardiovascular and central nervous system in obesity. In boy, due to the formation of gender peculiarities in the production of hormones, adipokines, and myokines, with obesity there are propose for appearance of a number of complications that worse the prognosis of disease in terms of development of its complications – type II diabetes mellitus and atherosclerosis. Conclusion. The development of obesity in children and adolescents is accompanied by the appearance of gender peculiarities on the part of the endocrine function of mesenchymal tissues.
Keywords: 
adipokines, myokines, lipid metabolism, obesity, children, аdolescents

Список литературы: 
  1. Weihrauch-Blüher S., Schwarz P., Klusmann J-H. Childhood obesity: increased risk for cardiometabolic disease and cancer in adulthood. Metabolism. 2019; 92: 147–52. DOI: 10.1016/j.metabol.2018.S.m,12.001
  2. Li Kheng Chai, Farletti R., Fathi L., Littlewood R. A Rapid Review of the Impact of Family-Based Digital Interventions for Obesity Prevention and Treatment on Obesity-Related Outcomes in Primary School-Aged Children. Nutrients. 2022; 14 (22): 4837–45. DOI: 10.3390/nu14224837
  3. Ronald Kahn C.R., Wang G., Lee K.Y. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J. Clin. Invest. 2019; 129 (10): 3990–4000. DOI: 10.1172/JCI129187
  4. Yuan M., Weidong Li., Yan Zhu, Boyao Yu., Jing Wu. Asprosin: A Novel Player in Metabolic Diseases. Front. Endocrinol. (Lausanne). 2020; 11: 64–72. DOI: 10.3389/fendo.2020.00064
  5. Choe S.S., Huh J.Y., Hwang I.J., Kim J.I., Kim J.B. Adipose Tissue Remodeling: Its Role in Energy Metabolism and Metabolic Disorders. Front. Endocrinol. (Lausanne). 2016; 7: 30–7. DOI: 10.3389/fendo.2016.00030.
  6. Fang H., Judd R.L. Adiponectin Regulation and Function. Compr. Physiol. 2018; 8 (3): 1031–63. DOI: 10.1002/cphy.c170046
  7. Aragón-Vela J., Alcalá-Bejarano Carrillo J., Moreno-Racero A., Plaza-Diaz J. The Role of Molecular and Hormonal Factors in Obesity and the Effects of Physical Activity in Children. Int. J. Mol. Sci. 2022; 23 (23): 15413–9. DOI: 10.3390/ijms232315413
  8. Iglesias P., Selgas R., Romero S., DIez J.J. Biological role, clinical significance, and therapeutic possibilities of the recently discovered metabolic hormone fibroblastic growth factor 21. Eur. J. Endocrinol. 2012; 167 (3): 301–9. DOI: 10.1530/EJE-12-0357
  9. Pereira S., Cline D.L., Glavas M.M., Covey S.D., Kieffer T.J. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr. Rev. 2021; 42 (1): 1–28. DOI: 10.1210/endrev/bnaa027
  10. Hoffmann J.G., Xie W., Chopra A.R. Energy Regulation Mechanism and Therapeutic Potential of Asprosin. Diabetes. 2020; 64 (4): 559–66. DOI: 10.2337/dbi19-0009
  11. Mazur-Bialy A.I. Asprosin-A Fasting-Induced, Glucogenic, and Orexigenic Adipokine as a New Promising Player. Will It Be a New Factor in the Treatment of Obesity, Diabetes, or Infertility? A Review of the Literature. Nutrients. 2021; 13 (2): 620–2. DOI: 10.3390/nu13020620
  12. Tripathi D., Kant S., Pandey S., Ehtesham N.Z. Resistin in metabolism, inflammation, and disease. FEBS J. 2020; 287 (15): 3141–9. DOI: 10.1111/febs.15322
  13. Gómez-Banoy N., , Guseh J.S., , Li G., Rubio-Navarro A., Chen T., Poirier B., Putzel G., Rosselot C., Pabón M.A., Camporez J.P., Bhambhani V., Hwang Shih-Jen, Chen Yao, Perry R.J. Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nat. Med. 2019; 25 (11): 1739–47. DOI: 10.1038/s41591-019-0610-4
  14. Shestopalov A.V., Mishra A., Gaponov A.M., Rumyantsev S.A. The Effect of TLR Agonists and Myokines on Secretory Activity of Adipogenically Differentiated MSC Cultures. Вull. Exp. Biol. Med. 2021; 171 (6): 722–6. DOI: 10.1007/s10517-021-05303-3 (in Russian).
  15. Kirk B., Feehan J., Lombardi G., Duque G. Muscle, Bone, and Fat Crosstalk: the Biological Role of Myokines, Osteokines, and Adipokines. Curr. Osteoporos. Rep. 2020; 18 (4): 388–400. DOI: 10.1007/s11914-020-00599-y
  16. Stanford K.I., Goodyear L.J. Muscle-Adipose Tissue Cross Talk. Cold Spring Harb. Perspect. Med. 2018; 8 (8): a029801. DOI: 10.1101/cshperspect.a029801.
  17. Milek M., Moulla Y., Kern M., Stroh C., Dietrich A., Schön M.R., Gärtner D., Lohmann T., Dressler M., Kovac P., Stumvoll M., Blüher M., Guiu-Jurado E. Adipsin Serum Concentrations and Adipose Tissue Expression in People with Obesity and Type 2 Diabetes. Int. J. Mol. Sci. 2022; 23 (4): 2222–9. DOI: 10.3390/ijms23042222
  18. Shin K., Pandey A., Xiang-Qin Liu, Anini Y., Rainey J.K. Preferential apelin-13 production by the proprotein convertase PCSK3 is implicated in obesity. FEBS Open Bio. 2013; 3: 328–33. DOI: 10.1016/j.fob.2013.08.001
  19. Hak A.E., Pols A., Visser T.J. Subclinical hypothyroidism is an independent risk factor for atherosclerosis and myocardial infarction in elderly women: the Rotterdam Study. Ann. Intern. Med. 2000; 132 (4): 270–8.
  20. Sridevi A., Vivekanand B., Giridhar G., Mythili A., Subrahmanyan K.A. Insulin resistance and lipid alterations in subclinical hypothyroidism. Indian J. Endocrinol. Metab. 2012; 16 (2): 345–6.
  21. Marczewski K., Gospodarczyk N., Gospodarczyk A., Widuch M., Tkocz M. Apelin in heart failure. Wiad. Lek. 2022; 75 (10): 2501–6. DOI: 10.36740/WLek202210130
  22. Ji M., Zuo Z., Zhang M., Xu Z., Hu G. Osteocrin alleviates cardiac hypertrophy via attenuating oxidative stress. Peptides. 2022; 15: 170773. DOI: 10.1016/j.peptides.2022.170773
  23. Ataman, B., Boulting, G., Harmin, D. Evolution of Osteocrin as an activity-regulated factor in the primate brain. Nature. 2016; 539: 242–7. DOI:org/10.1038/nature20111