A.V. Sultanbaev(1), Sh.I. Musin(1), K.V. Menshikov(1), A.A. Izmailov(1), A.F. Nasretdinov(1), N.I. Sultanbaevа(1),
I.A. Menshikova(2), I.V. Tsimafeyeu(3), D.O. Lipatov(2), M.V. Sultanbaev(2), O.N. Lipatov(2), D.A. Kudlay(4, 5)
1-HOUSE «Republican Clinical Oncological Dispensary» of the Ministry of Health of the Republic of Belarus,
prospekt Oktyabrya str., 73/1, Ufa, 450054, Republic of Bashkortostan;
2-GBOU «Bashkir State Medical University» of the Ministry of Health of the Russian Federation,
Lenin str., 3, Ufa, 450008, Republic of Bashkortostan;
3-Autonomous non-profit organization «Bureau of Cancer Research», 2 Mayakovsky Lane, Moscow, 109147, Russian Federation;
4-FGAOU HE «I. M. Sechenov First Moscow State Medical University» of the Ministry of Health
f the Russian Federation (Sechenov University), Trubetskaya Street, 8, Moscow, 119435, Russian Federation;
5-FGBU «State Scientific Center «Institute of Immunology» of the Federal Medical and Biological Agency,
Kashirskoe shosse, 24, Moscow, 115522, Russian Federation

Introduction. The effectiveness of antitumor immunity is determined by various mechanisms of recognition of tumor antigens, while the diversity of the repertoire of antigenic receptors is determined by V(D)J recombinations in maturing T and B cells. The aim of this work is to review scientific literature data on the role of chromosomal V(D)J recombinations of immune system cells in the mechanisms of antitumor immunity. Material and methods. This review presents data on the main mechanisms of antitumor immunity and the role of T- and B-cell receptor gene rearrangement in its formation. Results. From the presented analysis of literary sources, it follows that carcinogenesis is accompanied by suppression of the antitumor activity of the immune system. As a result, immunodeficiency states are observed in patients with malignant neoplasms. By-products of chromosomal V(D)J recombinations are DNA excision circles TREC and KREC. Their quantitative analysis in cancer patients makes it possible to determine the presence of immunodeficiency, as well as to evaluate the effectiveness of the formation of antitumor immunity. It is also noted that in immunocompromised cancer patients, the possibility of using personalized immunostimulation methods should be considered, which will improve control over the malignant process. Conclusions. The review reflects the mechanisms of the immune system response to carcinogenesis. The main stages of the interaction of the tumor antigen with the patient’s immune system are considered. Methods for evaluating the viability of antitumor immunity are describe
cancer, malignant neoplasm, carcinogenesis, antitumor immunity, antigen, antibody, TREC, KREC.

Список литературы: 
  1. Насретдинов А.Ф., Султанбаева Н.И., Мусин Ш.И., Меньшиков К.В., Султанбаев А.В. Уровень опухоль-инфильтрирующих лимфоцитов и PD-статус как возможные прогностические маркеры выживаемости и эффективности терапии при трижды негативном раке молочной железы. Опухоли женской репродуктивной системы. 2020; 16 (1): 65–70. DOI: 10.17650/1994-4098-2020-16-1-65-70
  2. [Nasretdinov A.F., Sultanbaeva N.I., Musin S.I., Pushkarev A.V., Menshikov K.V., Pushkarev V.A., Sultanbaev A.V. Level of tumor-infiltrating lymphocytes and PD status as potential prognostic markers of survival and therapy effectiveness in triple-negative breast cancer. Tumors of female reproductive system. 2020; 16 (1): 65–70. DOI: 10.17650/1994-4098-2020-16-1-65-70 (in Russian)].
  3. Шубина И.Ж., Сергеев А.В., Мамедова Л.Т., Соколов Н.Ю., Киселевский М.В. Современные представления о противоопухолевом иммунитете. Российский биотерапевтический журнал. 2015; 14 (3): 19–28. DOI: https: //
  4. [Shubina I.Z., Sergeev A.V., Mamedova L.T., Sokolov N.Yu., Kiselevsky M.V. Сurrent understanding of antitumor immunity. Russian J. of Biotherapy. 2015; 14 (3): 19–28. DOI: https: // (in Russian)].
  5. Wu Y., Biswas D., Swanton C. Impact of cancer evolution on immune surveillance and checkpoint inhibitor response. Semin. Cancer. Biol. 2022; 84: 89–102. DOI: 10.1016/j.semcancer.2021.02.013
  6. Wolf Y., Samuels Y. Intratumor Heterogeneity and Antitumor Immunity Shape One Another Bidirectionally. Clin. Cancer Res. 2022; 28 (14): 2994–3001. DOI: 10.1158/1078-0432.CCR-21-1355
  7. De Visser K.E., Joyce J.A. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 2023; 41 (3): 374–403. DOI: 10.1016/j.ccell.2023.02.016
  8. Farmer H., McCabe N., Lord C.J., Tutt A.N., Johnson D.A., Richardson T.B., Santarosa M., Dillon K.J., Hickson I., Knights C., Martin N.M., Jackson S.P., Smith G.C., Ashworth A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005; 434 (7035): 917–21. DOI: 10.1038/nature03445
  9. Tang Q., Chen Y., Li X., Long S., Shi Y., Yu Y., Wu W., Han L., Wang S. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Front. Immunol. 2022; 13: 964442. DOI: 10.3389/fimmu.2022.964442
  10. Zhang H., Liu L., Liu J., Dang P., Hu S., Yuan W., Sun Z., Liu Y., Wang C. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol. Cancer. 2023; 22 (1): 58. DOI: 10.1186/s12943-023-01725-x
  11. Sultanbaev A.V., Musin S., Menshikov K., Sultanbaeva N., Nasretdinov A., Menshikova I., Sultanbaev M., Kudlay D., Prodeus A. 58P Quantitative indicators of TREC and KREC excision rings in breast cancer. ESMO Open. 2023; 8 (1). DOI: 10.1016/j.esmoop.2023.101282
  12. Thommen D.S., Schumacher T.N. T Cell Dysfunction in Cancer. Cancer Cell. 2018; 33 (4): 547–62. DOI: 10.1016/j.ccell.2018.03.012
  13. Bone G., Lauder I. Cellular immunity, peripheral blood lymphocyte count and pathological staging of tumours in the gastrointestinal tract. Br. J. Cancer. 1974; 30 (3): 215–21. DOI: 10.1038/bjc.1974.184
  14. Gabrilovich D.I., Ostrand-Rosenberg S., Bronte V. Coordinated regulation of myeloid cells by tumours. Nat. Rev. Immunol. 2012; 12 (4): 253–68. DOI: 10.1038/nri3175
  15. Allen B.M., Hiam K.J., Burnett C.E., Venida A., DeBarge R., Tenvooren I., Marquez D.M., Cho N.W., Carmi Y., Spitzer M.H. Systemic dysfunction and plasticity of the immune macroenvironment in cancer models. Nat. Med. 2020; 26 (7): 1125–34. DOI: 10.1038/s41591-020-0892-6
  16. Borg C., Ray-Coquard I., Philip I., Clapisson G., Bendriss-Vermare N., Menetrier-Caux C., Sebban C., Biron P., Blay J.Y. CD4 lymphopenia as a risk factor for febrile neutropenia and early death after cytotoxic chemotherapy in adult patients with cancer. Cancer. 2004; 101 (11): 2675–80. DOI: 10.1002/cncr.20688
  17. Ray-Coquard I., Borg C., Bachelot T., Sebban C., Philip I., Clapisson G., Le Cesne A., Biron P., Chauvin F., Blay J.Y.; ELYPSE study group. Baseline and early lymphopenia predict for the risk of febrile neutropenia after chemotherapy. Br. J. Cancer. 2003; 88 (2): 181–6. DOI: 10.1038/sj.bjc.6600724
  18. Péron J., Cropet C., Tredan O., Bachelot T., Ray-Coquard I., Clapisson G., Chabaud S., Philip I., Borg C., Cassier P., Labidi Galy I., Sebban C., Perol D., Biron P., Caux C., Menetrier-Caux C., Blay J.Y. CD4 lymphopenia to identify end-of-life metastatic cancer patients. Eur. J. Cancer. 2013; 49 (5): 1080–9. DOI: 10.1016/j.ejca.2012.11.003
  19. Ray-Coquard I., Cropet C., Van Glabbeke M., Sebban C., Le Cesne A., Judson I., Tredan O., Verweij J., Biron P., Labidi I., Guastalla J.P., Bachelot T., Perol D., Chabaud S., Hogendoorn P.C., Cassier P., Dufresne A., Blay J.Y.; European Organization for Research and Treatment of Cancer Soft Tissue and Bone Sarcoma Group. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 2009; 69 (13): 5383–91. DOI: 10.1158/0008-5472.CAN-08-3845
  20. Trédan O., Manuel M., Clapisson G., Bachelot T., Chabaud S., Bardin-dit-Courageot C., Rigal C., Biota C., Bajard A., Pasqual N., Blay J.Y., Caux C., Ménétrier-Caux C. Patients with metastatic breast cancer leading to CD4+ T cell lymphopaenia have poor outcome. Eur. J. Cancer. 2013; 49 (7): 1673–82. DOI: 10.1016/j.ejca.2012.11.028
  21. Bagchi S., Yuan R., Engleman E.G. Immune Checkpoint Inhibitors for the Treatment of Cancer: Clinical Impact and Mechanisms of Response and Resistance. Annu. Rev. Pathol. 2021; 16: 223–49. DOI: 10.1146/annurev-pathol-042020-042741
  22. Sakamuri D., Glitza I.C., Betancourt Cuellar S.L., Subbiah V., Fu S., Tsimberidou A.M., Wheler J.J., Hong D.S., Naing A., Falchook G.S., Fanale M.A., Cabanillas M.E., Janku F. Phase I Dose-Escalation Study of Anti-CTLA-4 Antibody Ipilimumab and Lenalidomide in Patients with Advanced Cancers. Mol. Cancer Ther. 2018; 17 (3): 671–6. DOI: 10.1158/1535-7163.MCT-17-0673
  23. Simmons D., Lang E. The Most Recent Oncologic Emergency: What Emergency Physicians Need to Know About the Potential Complications of Immune Checkpoint Inhibitors. Cureus. 2017; 9 (10): 1774. DOI: 10.7759/cureus.1774
  24. Дмитриевская М.И., Ибрагимова Д.Н., Усеинова А.Н., Ребик А.А. Роль ингибиторов иммунных контрольных точек в реализации противоракового иммунитета. Крымский журнал экспериментальной и клинической медицины. 2021; 11 (3): 93–9. DOI: 10.37279/2224-6444-2021-11-3-93-99
  25. [Dmitrievskaja M.I., Ibragimova D.N., Useinova A.N., Rebik A.A. The role of immune checkpoint inhibitors in antitumoral immunity. Crimea J. of Experimental and Clinical Medicine. 2021; 11 (3): 93–9. DOI: 10.37279/2224-6444-2021-11-3-93-99 (in Russian)].
  26. Лепик К.В. Ингибиторы иммунных контрольных точек в терапии лимфом. Клиническая онкогематология. 2018; 11 (4): 303–12. DOI: 10.21320/2500-21392018-11-4-303-312
  27. [Gribkova I.V. Immune checkpoint inhibitors in pediatric hematologic malignancies. Oncohematology. 2023; 18 (2): 25 34. DOI: 10.21320/2500-21392018-11-4-303-312 (in Russian)].
  28. Qayoom H., Sofi S., Mir M.A. Targeting tumor microenvironment using tumor-infiltrating lymphocytes as therapeutics against tumorigenesis. Immunol. Res. 2023. doi: 10.1007/s12026-023-09376-2
  29. Farmer H., McCabe N., Lord C.J., Tutt A.N., Johnson D.A., Richardson T.B., Santarosa M., Dillon K.J., Hickson I., Knights C., Martin N.M., Jackson S.P., Smith G.C., Ashworth A. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005; 434 (7035): 917–21. DOI: 10.1038/nature03445
  30. Саяпина М. С. Иммунорегуляторные функции ингибиторов PD-1/PD-L1 и развитие к ним резистентности. Злокачественные опухоли. 2017; 7 (2): 94–9. DOI: 10.18027/2224-5057-2017-2-94-99
  31. [Sayapina M.S. Immunoregulatory functions of PD-1/PD-L1 inhibitors and development of resistance to them. Malignant tumours. 2017; 7 (2): 94–9. DOI: 10.18027/2224-5057-2017-2-94-99 (in Russian)].
  32. Boussiotis V.A. Molecular and Biochemical Aspects of the PD-1 Checkpoint Pathway. N. Engl. J. Med. 2016; 375 (18): 1767–78. DOI: 10.1056/NEJMra1514296
  33. Болотина Л.В., Каприн А.Д. Иммуноонкология: новые горизонты лекарственной терапии солидных опухолей. Онкология. Журнал им. П.А. Герцена. 2017; 6 (5): 74–80. DOI: 10.17116/onkolog20176574-80
  34. [Bolotina L.V., Kaprin A.D. Immuno-oncology: new possibilities of drug therapy for solid tumors. P.A. Herzen J. of Oncology. 2017; 6 (5): 74 80. DOI: 10.17116/onkolog20176574-80 (in Russian)].
  35. Южакова Д.В., Ширманова М.В., Сергеева Т.Ф., Загайнова Е.В., Лукьянов К.А. Иммунотерапия злокачественных новообразований. Современные технологии в медицине. 2016; 8 (1): 173–82. DOI: 10.17691/stm2016.8.1.23
  36. [Yuzhakova D.V., Shirmanova M.V., Sergeeva T.F., Zagaynova E.V., Lukyanov К.А. Immunotherapy of Cancer (Review). Sovremennye tehnologii v medicine. 2016; 8 (1): 173. DOI: 10.17691/stm2016.8.1.23 (in Russian)].
  37. Zhang Y., Zhang Z. The history and advances in cancer immunotherapy: understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020; 17 (8): 807–21. DOI: 10.1038/s41423-020-0488-6
  38. Ott P.A., Bang Y.J., Piha-Paul S.A., Razak A.R.A., Bennouna J., Soria J.C., Rugo H.S., Cohen R.B., O’Neil B.H., Mehnert J.M., Lopez J., Doi T., van Brummelen E.M.J., Cristescu R., Yang P., Emancipator K., Stein K., Ayers M., Joe A.K., Lunceford J.K. T-Cell-Inflamed Gene-Expression Profile, Programmed Death Ligand 1 Expression, and Tumor Mutational Burden Predict Efficacy in Patients Treated With Pembrolizumab Across 20 Cancers: KEYNOTE-028. J. Clin. Oncol. 2019; 37 (4): 318–27. DOI: 10.1200/JCO.2018.78.2276
  39. Qin T., Zeng Y.D., Qin G., Xu .F, Lu J.B., Fang W.F., Xue C., Zhan J.H., Zhang X.K., Zheng Q.F., Peng R.J., Yuan Z.Y., Zhang L., Wang S.S. High PD-L1 expression was associated with poor prognosis in 870 Chinese patients with breast cancer. Oncotarget. 2015; 6 (32): 33972–81. DOI: 10.18632/oncotarget.5583
  40. Okiyama N., Tanaka R. Immune-related adverse events in various organs caused by immune checkpoint inhibitors. Allergology international: official J. of the Japanese Society of Allergology. 2022; 71 (2): 169–78. DOI: 10.1016/j.alit.2022.01.001
  41. Yao L., Jia G., Lu L., Bao Y., Ma W. Factors affecting tumor responders and predictive biomarkers of toxicities in cancer patients treated with immune checkpoint inhibitors. Int. Immunopharmacol. 2020; 85: 106628. DOI: 10.1016/j.intimp.2020.106628
  42. Tsimafeyeu I., Imyanitov E., Zavalishina L., Raskin G., Povilaitite P., Savelov N., Kharitonova E., Rumyantsev A., Pugach I., Andreeva Y., Petrov A., Frank G., Tjulandin S. Agreement between PDL1 immunohistochemistry assays and polymerase chain reaction in non-small cell lung cancer: CLOVER comparison study. Sci. Rep. 2020; 10 (1): 3928. DOI: 10.1038/s41598-020-60950-2
  43. van den Bulk J., Verdegaal E.M., de Miranda N.F.. Cancer immunotherapy: broadening the scope of targetable tumours. Open Biol. 2018; 8 (6): 180037. DOI: 10.1098/rsob.180037
  44. Wang Y., Liu Z.G., Yuan H., Deng W., Li J., Huang Y., Kim B.Y.S., Story M.D., Jiang W. The Reciprocity between Radiotherapy and Cancer Immunotherapy. Clin. Cancer Res. 2019; 25 (6): 1709–17. DOI: 10.1158/1078-0432.CCR-18-2581
  45. Yu W.D., Sun G., Li J., Xu J., Wang X. Mechanisms and therapeutic potentials of cancer immunotherapy in combination with radiotherapy and/or chemotherapy. Cancer Lett. 2019; 452: 66–70. DOI: 10.1016/j.canlet.2019.02.048
  46. Volkova M., Tsimafeyeu I., Olshanskaya A., Khochenkova Y., Solomko E., Ashuba S., Khochenkov D., Matveev V. Expression of growth factors and their receptors in the primary renal cell carcinoma: new data and review. Cent. European J. Urol. 2020; 73 (4): 466–75. DOI: 10.5173/ceju.0189.R1
  47. Wolf M.M., Rathmell W.K., de Cubas A.A. Immunogenicity in renal cell carcinoma: shifting focus to alternative sources of tumour-specific antigens. Nat. Rev. Nephrol. 2023. DOI: 10.1038/s41581-023-00700-5.
  48. Tsimafeyeu I., Statsenko G., Vladimirova L., Besova N., Artamonova E., Raskin G., Rykov I., Mochalova A., Utyashev I., Gorbacheva S., Kazey V., Gavrilova E., Dragun N., Moiseyenko V., Tjulandin S. A phase 1b study of the allosteric extracellular FGFR2 inhibitor alofanib in patients with pretreated advanced gastric cancer. Invest. New Drugs. 2023; 41 (2): 324–32. DOI: 10.1007/s10637-023-01340-z
  49. Sultanbaev A.V., Musin S., Menshikov K., Sultanbaeva N., Menshikova I., Fatikhova A., Sultanbaev M., Askarov V., Kudlay D. 99P Quantitative indicators of TREC and KREC excision rings in malignant neoplasms. ESMO Open. 2023; 8 (1): 100957. DOI: https: //
  50. Gellert M. V(D)J recombination: RAG proteins, repair factors, and regulation. Annu. Rev. Biochem. 2002; 71: 101–32. DOI: 10.1146/annurev.biochem.71.090501.150203
  51. Hiom K., Gellert M. A stable RAG1-RAG2-DNA complex that is active in V(D)J cleavage. Cell. 1997; 88 (1): 65–72. DOI: 10.1016/s0092-8674(00)81859-0
  52. Султанбаев А.В., Мусин Ш.И., Меньшиков К.В., Билалов Ф.С., Меньшикова И.А., Султанбаева Н.И., Липатов Д.О., Аскаров В.Е., Султанбаев М.В., Насретдинов А.Ф., Батырова Э.Р. Прогностическое значение эксцизионных колец KREC и TREC при злокачественных новообразованиях. Материалы V юбилейного Международного Форума онкологии и радиологии. М., 2022; 191.
  53. [Sultanbaev A.V., Musin Sh.I., Menshikov K.V., Bilalov F.S., Menshikova I.A., Sultanbaeva N.I., Lipatov D.O., Askarov V.E., Sultanbaev M. .V., Nasretdinov A.F., Batyrova E.R. Prognostic value of KREC and TREC excision rings in malignant neoplasms. Materials of the V Anniversary International Forum of Oncology and Radiology. Moscow, 2022; 191 (in Russian)].
  54. Gordukova M., Oskorbin I., Mishukova O., Zimin S., Zinovieva N., Davydova N., Smirnova A., Nikitina I., Korsunsky I., Filipenko M., Prodeus A. Development of real-time multiplex pcr for the quantitative determination of TREC’S AND KREC’S in whole blood and in dried blood spots. Medical Immunology (Russia). 2015; 17 (5): 467. DOI: 10.15789/1563-0625-2015-5-467-478
  55. Schatz D.G., Swanson P.C. V(D)J recombination: mechanisms of initiation. Annu. Rev. Genet. 2011; 45: 167–202. DOI: 10.1146/annurev-genet-110410-132552
  56. Rodgers K.K. Riches in RAGs: Revealing the V(D)J Recombinase through High-Resolution Structures. Trends Biochem. Sci. 2017; 42 (1): 72–84. DOI: 10.1016/j.tibs.2016.10.003
  57. Lu J., Van Laethem F., Bhattacharya A., Craveiro M., Saba I., Chu J., Love N.C., Tikhonova A., Radaev S., Sun X., Ko A., Arnon T., Shifrut E., Friedman N., Weng N.P., Singer A., Sun P.D. Molecular constraints on CDR3 for thymic selection of MHC-restricted TCRs from a random pre-selection repertoire. Nat. Commun. 2019; 10 (1): 1019. DOI: 10.1038/s41467-019-08906-7
  58. Wu G.S., Culberson E.J., Allyn B.M., Bassing C.H. Poor-Quality Vβ Recombination Signal Sequences and the DNA Damage Response ATM Kinase Collaborate to Establish TCRβ Gene Repertoire and Allelic Exclusion. J. Immunol. 2022; 208 (11): 2583–92. DOI: 10.4049/jimmunol.2100489
  59. Hiom K., Gellert M. Assembly of a 12/23 paired signal complex: a critical control point in V(D)J recombination. Mol. Cell. 1998; 1 (7): 1011–9. DOI: 10.1016/s1097-2765(00)80101-x
  60. Swanson P.C. A RAG-1/RAG-2 tetramer supports 12/23-regulated synapsis, cleavage, and transposition of V(D)J recombination signals. Mol. Cell. Biol. 2002; 22 (22): 7790–801. DOI: 10.1128/MCB.22.22.7790-7801.2002
  61. Wu G.S., Bassing C.H. Inefficient V(D)J recombination underlies monogenic T cell receptor β expression. Proc. Natl. Acad. Sci. USA. 2020; 117 (31): 18172–4. DOI: 10.1073/pnas.2010077117
  62. Давыдова Н.В., Продеус А.П., Образцов И.В., Кудлай Д.А., Корсунский И.А. Референсные значения концентрации TREC и KREC у взрослых. Врач. 2021; 32 (6): 21–8. DOI: https: //
  63. [Davydova N.V., Prodeus A.P., Obraztsov I.V., Kudlai D.A., Korsunsky I.A. Reference values for TREC and KREC concentration in adults. Vrach (The Doctor). 2021; 32 (6): 21–8. DOI: https: //]
  64. Образцов И.В., Гордукова М.А., Цветкова Е.В., Кононова Е.В., Томилин И.Я., Кондратчик К.Л., Карелин А.Ф., Продеус А.П., Карачунский А.И., Румянцев А.Г. Эксцизионные кольца V(D)J рекомбинации B- и T-клеток как показатели иммунологической реконституции у детей с острым лимфобластным лейкозом. Вопросы гематологии/онкологии и иммунопатологии в педиатрии. 2016; 15 (4): 4250. DOI:
  65. [Obraztsov I.V., Gordukova M.A., Tsvetkova E.V., Kononova E.V., Tomilin I.Y., Kondratchik K.L., Karelin A.F., Prodeus A.P., Karachunskiy A.I., Rumyantsev A.G. B- and T-cell V(D)J-recombination excision circles as indicators of immunological reconstitution in children with acute lymphoblastic leukemia. Pediatric Hematology/Oncology and Immunopathology. 2016; 15 (4): 42–50. DOI: (in Russian)].
  66. Kwok J.S.Y, Cheung S.K.F., Ho J.C.Y., Tang I.W.H., Chu P.W.K., Leung E.Y.S., Lee P.P.W., Cheuk D.K.L., Lee V., Ip P., Lau Y.L. Establishing Simultaneous T Cell Receptor Excision Circles (TREC) and K-Deleting Recombination Excision Circles (KREC) Quantification Assays and Laboratory Reference Intervals in Healthy Individuals of Different Age Groups in Hong Kong. Front. Immunol. 2020; 11: 1411. DOI: 10.3389/fimmu.2020.01411
  67. Образцов И.В., Гордукова М.А., Северина Н.А., Бидерман Б.В., Смирнова С.Ю., Судариков А.Б., Никитин Е.А., Румянцев А.Г. Эксцизионные кольца V(D)J-рекомбинации B- и T-клеток как прогностический маркер при В-клеточном хроническом лимфолейкозе. Клиническая онкогематология. 2017; 10 (2): 131–40. DOI: 10.21320/2500-2139-2017-10-2-131-140
  68. [Obraztsov I.V., Gordukova M.A., Severina N.A., Biderman B.V., Smirnova S.Yu., Sudarikov A.B., Nikitin E.A., Rumyantsev A.G. V(D)J Recombination Excision Circles of B- and T-cells as Prognostic Marker in B-Cell Chronic Lymphocytic Leukemia. Clinical oncohematology. 2017; 10 (2): 131–40. DOI: 10.21320/2500-2139-2017-10-2-131-140 (in Russian)].
  69. Toubert A., Glauzy .S, Douay C., Clave E. Thymus and immune reconstitution after allogeneic hematopoietic stem cell transplantation in humans: never say never again. Tissue Antigens. 2012; 79 (2): 83–9. DOI: 10.1111/j.1399-0039.2011.01820.x
  70. Velardi E., Clave E., Arruda L.C.M., Benini F., Locatelli F., Toubert A. The role of the thymus in allogeneic bone marrow transplantation and the recovery of the peripheral T-cell compartment. Semin. Immunopathol. 2021; 43 (1): 101–17. DOI: 10.1007/s00281-020-00828-7
  71. Mensen A., Ochs C., Stroux A., Wittenbecher F., Szyska M., Imberti L., Fillatreau S., Uharek L., Arnold R., Dörken B., Thiel A., Scheibenbogen C., Na I.K. Utilization of TREC and KREC quantification for the monitoring of early T- and B-cell neogenesis in adult patients after allogeneic hematopoietic stem cell transplantation. J. Transl. Med. 2013; 11: 188. DOI: 10.1186/1479-5876-11-188
  72. Корсунский И.А., Кудлай Д.А., Продеус А.П., Щербина А.Ю., Румянцев А.Г. Неонатальный скрининг на первичные иммунодефицитные состояния и Т-/В-клеточные лимфопении как основа формирования групп риска детей с врожденными патологиями. Педиатрия им. Г.Н. Сперанского. 2020; 99 (2): 8–15. DOI: 10.24110/0031-403X-2020-99-2-8-15
  73. [Korsunskiy I.A., Kudlay D.A., Prodeus A.P., Shсherbina A.Yu., Rumjancev A.G. Neonatal screening for primary immunodeficiency and Т-/B-cell lymphopenia as the basis for the formation of risk groups for children with congenital pathologies. Pediatria n.a. G.N. Speransky. 2020; 99 (2): 8–15. DOI: 10.24110/0031-403X-2020-99-2-8-15 (in Russian)].
  74. Somech R., Lev A., Simon A.J., Korn D., Garty B.Z., Amariglio N., Rechavi G., Almashanu S., Zlotogora J., Etzioni A. Newborn screening for severe T and B cell immunodeficiency in Israel: a pilot study. Isr. Med. Assoc. J. 2013; 15 (8): 472–7.
  75. Drylewicz J., Vrisekoop N., Mugwagwa T., de Boer A.B., Otto S.A., Hazenberg M.D., Tesselaar K., de Boer R.J., Borghans J.A. Reconciling Longitudinal Naive T-Cell and TREC Dynamics during HIV-1 Infection. PLoS One. 2016; 11 (3): e0152513. DOI: 10.1371/journal.pone.0152513
  76. Mikhael N.L., Elsorady M. Clinical significance of T cell receptor excision circle (TREC) quantitation after allogenic HSCT. Blood Res. 2019; 54(4): 274-281. DOI: 10.5045/br.2019.54.4.274
  77. Morgun A., Shulzhenko N., Socorro-Silva A., Diniz R.V., Almeida D.R., Gerbase-Delima M. T cell receptor excision circles (TRECs) in relation to acute cardiac allograft rejection. J. Clin. Immunol. 2004; 24 (6): 612–6. DOI: 10.1007/s10875-004-6246-1
  78. Söderström A., Vonlanthen S., Jönsson-Videsäter K., Mielke S., Lindahl H., Törlén J., Uhlin M. T cell receptor excision circles are potential predictors of survival in adult allogeneic hematopoietic stem cell transplantation recipients with acute myeloid leukemia. Front. Immunol. 2022; 13: 954716. DOI: 10.3389/fimmu.2022.954716
  79. Козлов В.А., Тихонова Е.П., Савченко А.А., Кудрявцев И.В., Андронова Н.В., Анисимова Е.Н., Головкин А.С., Демина Д.В., Здзитовецкий Д.Э., Калинина Ю.С., Каспаров Э.В., Козлов И.Г., Корсунский И.А., Кудлай Д.А., Кузьмина Т.Ю., Миноранская Н.С., Продеус А.П., Старикова Э.А., Черданцев Д.В., Чесноков А.Б., Шестерня П.А., Борисов А.Г. Клиническая иммунология. Практическое пособие для инфекционистов. Красноярск: Поликор, 2021; 563. DOI: 10.17513/np.518
  80. [Kozlov V.A., Tikhonova E.P., Savchenko A.A., Kudryavtsev I.V., Andronova N.V., Anisimova E.N., Golovkin A.S., Demina D.V., Zdzitovetsky D. .E., Kalinina Yu.S., Kasparov E.V., Kozlov I.G., Korsunsky I.A., Kudlai D.A., Kuzmina T.Yu., Minoranskaya N.S., Prodeus A.P. ., Starikova E.A., Cherdantsev D.V., Chesnokov A.B., Shesternya P.A., Borisov A.G. Clinical immunology. A practical guide for infectious disease specialists. Krasnoyarsk: Polikor, 2021; 563. DOI: 10.17513/np.518 (in Russian)].
  81. Motta M., Chiarini M., Ghidini C., Zanotti C., Lamorgese C., Caimi L., Rossi G., Imberti L. Quantification of newly produced B and T lymphocytes in untreated chronic lymphocytic leukemia patients. J. Transl. Med. 2010; 8: 111. DOI: 10.1186/1479-5876-8-111
  82. Robert C., Lebbé C., Lesimple T., Lundström E., Nicolas V., Gavillet B., Crompton P., Baroudjian B., Routier E., Lejeune F.J. Phase I Study of Androgen Deprivation Therapy in Combination with Anti-PD-1 in Melanoma Patients Pretreated with Anti-PD-1. Clin. Cancer Res. 2023; 29 (5): 858–65. DOI: 10.1158/1078-0432.CCR-22-2812
  83. Wu G.S., Yang-Iott K.S., Klink M.A., Hayer K.E., Lee K.D., Bassing C.H. Poor quality Vβ recombination signal sequences stochastically enforce TCRβ allelic exclusion. J. Exp. Med. 2020; 217 (9): e20200412. DOI: 10.1084/jem.20200412
  84. Tumeh P.C., Harview C.L., Yearley J.H., Shintaku I.P., Taylor E.J., Robert L., Chmielowski B., Spasic M., Henry G., Ciobanu V., West A.N., Carmona M., Kivork C., Seja E., Cherry G., Gutierrez A.J., Grogan T.R., Mateus C., Tomasic G., Glaspy J.A., Emerson R.O., Robins H., Pierce R.H., Elashoff D.A., Robert C., Ribas A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014; 515 (7528): 568–71. DOI: 10.1038/nature13954.