A.L. Yasenyavskaya, A.A. Tsibizova, M.A. Samotrueva
Astrakhan State Medical University, Bakinskaya str., 121, Astrakhan, 414000, Russian Federation

Introduction. The review is devoted to the analysis of modern concepts of the neurodegenerative properties of depression. Depression is now regarded as the most common mental illness with significant social consequences. The aim of the study is to determine the pathogenetic role of changes in the metabolism of neurotransmitters and an excess amount of excitatory transmitters in the implementation of the mechanisms of neuronal plasticity disorders in depressive states, leading to the formation of neurodegenerative changes. Material and methods. The scientific literature was searched in the National Library of Medicine (ncbi), PubMed, e-library databases mainly for the last decade. An analysis of the literature data of domestic and foreign sources was carried out using the deconstruction method, aspect analysis, as well as a descriptive method that allows one to be based on «descripts» (depression, neurodegeneration, neuronal plasticity, neurotrophins, neuropeptides), focusing on the most important aspects of the object of study. Results and discussion. The role of pro-inflammatory cytokines, hormones, neurotrophins, neuropeptides in the implementation of the pathogenetic mechanisms of depressive disorder is described. It should be noted a number of advantages of neuropeptides as endogenous regulators of the functioning of the central nervous system, manifested in high physiological activity, the presence of several binding groups for different cell receptors, the regulatory ability to express other signaling molecules, the minimum half-life, the absence of most side effects, the ability to penetrate through the blood-brain barrier, as well as the manifestation of trophic, anti-inflammatory, growth, mediator and effector properties, which leads to a high interest in endogenous peptide compounds and their synthetic analogues as promising therapeutic agents. The lack of a unified theory of the development of depression definitely contributes to an active research interest, which in recent years has been directed to the search for more accurate biological markers of the disease and new therapeutic agents, using innovative achievements in the synthesis of new compounds, as well as the use of agents that have proven their effectiveness and safety.
depression, neurodegeneration, neuronal plasticity, neurotrophins, neuropeptides

Список литературы: 
  1. McCarron R.M., Shapiro B., Rawles J., Luo J. Depression. Ann Intern Med. 2021;174 (5): 65. DOI: 10.7326/AITC202105180.
  2. Malhi G.S., Mann J.J. Depression. Lancet. 2018; 10161 (392): 2299. DOI: 10.1016/S0140-6736(18)31948-2.
  3. Levin O.S., Vasenina E.E. Depression and cognitive decline in elderly: causes and consequences. Korsakov J. of neurology and psychiatry. 2019; 119 (7): 87. DOI: 10.17116/jnevro201911907187
  4. Park S., Rosenblatt J.D., Britzke E., Pan Z., Li Yu., Cao B., Zuckerman H., Kalantarova A., McIntyre R.S. Stress, epigenetics and depression: A systematic review. Neurosci Biobehav Rev. 2019; 102: 139. DOI: 10.1016/j.neubiorev.2019.04.010.
  5. Hersey M., Hashemi P., Reagan L.P. Integrating the monoamine and cytokine hypotheses of depression: Is histamine the missing link? Eur J Neurosci. 2022; 55 (9–10): 2895. DOI: 10.1111/ejn.15392.
  6. Kasatkina M.Yu., Zhanin I.S., Gulyaeva N.V. Biomarkers of stroke and depression: are there specific markers of post-stroke depression? Neurochemistry. 2020; 14 (4): 353–61. DOI: 10.1134/S1819712420040030
  7. Boku S., Nakagawa S., Toda H., Hishimoto A. Neural basis of major depressive disorder: Beyond monoamine hypothesis. Psychiatry Clin Neurosci. 2018; 72 (1): 3. DOI: 10.1111/pcn.12604.
  8. Jesulola E., Micalos P., Baguley I.J. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model – are we there yet? Behav Brain Res. 2018; 341: 79. DOI: 10.1016/j.bbr.2017.12.025.
  9. Kudryashova I.V. Neurodegenerative changes in depression: excitotoxicity or deficiency of trophic factors? Neurochemistry. 2015; 32 (1): 5–12. DOI: 10.7868/S1027813315010045
  10. Beurel E., Toups M., Nemeroff C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron. 2020; 107 (2): 234. DOI: 10.1016/j.neuron.2020.06.002.
  11. Uchida S., Yamagata H., Seki T., Watanabe Y. Epigenetic mechanisms of major depression: Targeting neuronal plasticity. Psychiatry Clin Neurosci. 2018; 72 (4): 212–27. DOI: 10.1111/pcn.12621.
  12. Price R.B, Duman R. Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model. Mol Psychiatry. 2020; 25 (3): 530–43. DOI: 10.1038/s41380-019-0615-x.
  13. Rubin R. Exploring the Relationship Between Depression and Dementia. JAMA. 2018; 320 (10): 961–2. DOI: 10.1001/jama.2018.11154.
  14. Hurley L.L., Tizabi Y. Neuroinflammation, neurodegeneration, and depression. Neurotox Res. 2013; 23 (2): 131–44. DOI: 10.1007/s12640-012-9348-1.
  15. Jia X., Gao Z., Hu H. Microglia in depression: current perspectives. Sci China Life Sci. 2021; 64 (6): 911–25. DOI: 10.1007/s11427-020-1815-6
  16. Ting E.Y.C., Yang A.C., Tsai S.J. Role of interleukin-6 in depressive disorder. Int. J. Mol. Sci. 2020; 21 (6): 2194. DOI: 10.3390/ijms21062194.
  17. Beurel E., Toups M., Nemeroff C.B. The Bidirectional Relationship of Depression and Inflammation: Double Trouble. Neuron. 2020; 107 (2): 234–56. DOI: 10.1016/j.neuron.2020.06.002.
  18. Borsini A., Di Benedetto M.G., Giacobbe J., Pariante C.M. Pro-And anti-inflammatory properties of interleukin in vitro: relevance for major depression and human hippocampal neurogenesis. Int. J. Neuropsychopharmacol. 2020; 23 (11): 738–50. DOI: 10.1093/ijnp/pyaa055
  19. Yan Z., Rein B. Mechanisms of synaptic transmission dysregulation in the prefrontal cortex: pathophysiological implications. Mol. Psychiatry. 2022; 27 (1): 445–65. DOI: 10.1038/s41380-021-01092-3.
  20. Bhatt S., Nagappa A.N., Patil C.R. Role of oxidative stress in depression. Drug Discov. Today. 2020; 25 (7): 1270–6. DOI: 10.1016/j.drudis.2020.05.001
  21. Farrell C., Doolin K., O’Leary N., Jairaj C., Roddy D., Tozzi L., O’Keane V. DNA methylation differences at the glucocorticoid receptor gene in depression are related to functional alterations in hypothalamic–pituitary–adrenal axis activity and to early life emotional abuse. Psychiatry Res. 2018; 265: 341–8. DOI: 10.1016/j.psychres.2018.04.064.
  22. Labad J., Soria V., Salvat-Pujol N., Segalàs C., Real E., Urretavizcaya M., Menchón J.M. Hypothalamic-pituitary-adrenal axis activity in the comorbidity between obsessive-compulsive disorder and major depression. Psychoneuroendocrinology. 2018; 93: 20–8. DOI: 10.1016/j.psyneuen.2018.04.008.
  23. Levy M.J., Boulle F., Steinbusch H.W., van den Hove D.L., Kenis G., Lanfumey L. Neurotrophic factors and neuroplasticity pathways in the pathophysiology and treatment of depression. Psychopharmacology. 2018; 235 (8): 2195–220. DOI: 10.1007/s00213-018-4950-4.
  24. Mondal A.C., Fatima M. Direct and indirect evidences of BDNF and NGF as key modulators in depression: role of antidepressants treatment. Int J Neurosci. 2019; 129 (3): 283–96. DOI: 10.1080/00207454.2018.1527328.
  25. Yang T., Nie Z., Shu H., Kuang Y., Chen X., Cheng J., Liu H. The role of BDNF on neural plasticity in depression. Front. Cell. Neurosci. 2020; 14: 82. DOI: 10.3389/fncel.2020.00082.
  26. Mosiołek A., Mosiołek J., Jakima S., Pięta A., Szulc A. Effects of antidepressant treatment on neurotrophic factors (BDNF and IGF-1) in patients with major depressive disorder (MDD). J. Clin. Med. 2021; 10 (15): 3377. DOI: 10.3390 / jcm10153377
  27. Tauil C.B., Rocha-Lima A.D., Ferrari B.B., da Silva F.M., Machado L.A., Ramari C., dos Santos-Neto L.L. Depression and anxiety disorders in patients with multiple sclerosis: association with neurodegeneration and neurofilaments. Braz. J. Med. Biol. Res. 2021; 54. DOI: 10.1590/1414-431X202010428
  28. Zheng W., Zhou Y.L., Wang C.Y., Lan X.F., Zhang B., Zhou S.M., Ning Y.P. Association of plasma VEGF levels and the antidepressant effects of ketamine in patients with depression. Ther Adv Psychopharmacol. 2021; 11: 20451253211014320. DOI: 10.1177/20451253211014320.
  29. Jiang C., Lin W.J., Sadahiro M., Labonté B., Menard C., Pfau M.L., Tamminga C.A., Turecki G., Nestler E.J., Russo S.J., Salton S.R. VGF function in depression and antidepressant efficacy. Mol. Psychiatry. 2018; 23 (7): 1632–42. DOI: 10.1038/mp.2017.233.
  30. Nedic Erjavec G., Sagud M., Nikolac Perkovic M., Svob Strac D., Konjevod M., Tudor L., Uzun S., Pivac N. Depression: Biological markers and treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2021; 105: 110139. DOI: 10.1016/j.pnpbp.2020.110139.
  31. Tauil C.B., Rocha-Lima A.D., Ferrari B.B., Silva F.M.D., Machado L.A., Ramari C., Brandão C.O., Santos L.M.B.D., Santos-Neto L.L.D. Depression and anxiety disorders in patients with multiple sclerosis: association with neurodegeneration and neurofilaments. Braz J Med Biol Res. 2021; 54 (3): e10428. DOI: 10.1590/1414-431X202010428.
  32. Deyama S., Bang E., Kato T., Li X.Y., Duman R.S. Neurotrophic and Antidepressant Actions of Brain-Derived Neurotrophic Factor Require Vascular Endothelial Growth Factor. Biol Psychiatry. 2019; 86 (2): 143–52. DOI: 10.1016/j.biopsych.2018.12.014.
  33. Stepanichev M., Dygalo N.N., Grigoryan G., Shishkina G.T., Gulyaeva N. Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. Biomed Res Int. 2014; 2014: 932757. DOI: 10.1155/2014/932757.
  34. Pu J., Liu Y., Gui S., Tian L., Xu S., Song X., Zhong X., Chen Y., Chen X., Yu Y., Liu L., Zhang H., Wang H., Zhou C., Zhao L., Xie P. Vascular endothelial growth factor in major depressive disorder, schizophrenia, and bipolar disorder: A network meta-analysis. Psychiatry Res. 2020; 292: 113319. DOI: 10.1016/j.psychres.2020.113319.
  35. Pisoni A., Strawbridge R., Hodsoll J., Powell T.R., Breen G., Hatch S., Hotopf M., Young A.H., Cleare A.J. Growth Factor Proteins and Treatment-Resistant Depression: A Place on the Path to Precision. Front Psychiatry. 2018; 9: 386. DOI: 10.3389/fpsyt.2018.00386.
  36. Quinn J.P., Kandigian S.E., Trombetta B.A., Arnold S.E., Carlyle B.C. VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases. Brain Commun. 2021; 3 (4): fcab261. DOI: 10.1093/braincomms/fcab261.
  37. Li X.B., Zheng W., Ning Y.P., Cai D.B., Yang X.H., Ungvari G.S., Xiang Y.T. Erythropoietin for cognitive deficits associated with schizophrenia, bipolar disorder, and major depression: a systematic review. Pharmacopsychiatry. 2018; 51 (03): 100–4. DOI: 10.1055/s-0043-114670.
  38. Ochi T., Vyalova N.M., Losenkov I.S., Levchuk L.A., Osmanova D.Z., Mikhalitskaya E.V., Ivanova S.A. Investigating the potential role of BDNF and PRL genotypes on antidepressant response in depression patients: a prospective inception cohort study in treatment-free patients. J. Affect. Disord. 2019; 259: 432–9. DOI: 10.1016/j.jad.2019.08.058.
  39. Ji M.J., Zhang X.Y., Chen Z., Wang J.J., Zhu J.N. Orexin prevents depressive-like behavior by promoting stress resilience. Mol. Psychiatry. 2019; 24 (2): 282–93. DOI: 10.1038/s41380-018-0127-0.
  40. Birk J.L., Kronish I.M., Moise N., Falzon L., Yoon S., Davidson K.W. Depression and multimorbidity: Considering temporal characteristics of the associations between depression and multiple chronic diseases. Health Psychology. 2019; 38 (9): 802. DOI: 10.1037/hea0000737.
  41. Milaneschi Y., Simmons W.K., van Rossum E.F., Penninx B.W. Depression and obesity: evidence of shared biological mechanisms. Mol. Psychiatry. 2019; 24 (1): 18–33. DOI: 10.1038/s41380-018-0017-5.
  42. Ge T., Fan J., Yang W., Cui R., Li B. Leptin in depression: a potential therapeutic target. Cell Death Dis. 2018; 9 (11): 1-10. DOI: 10.1038/s41419-018-1129-1.
  43. Morin V., Hozer F., Costemale-Lacoste J.F. The effects of ghrelin on sleep, appetite, and memory, and its possible role in depression: a review of the literature. L’encephale. 2018; 44 (3): 256–63. DOI: 10.1016/j.encep.2017.10.012.
  44. Jahangard L., Solgy R., Salehi I., Taheri S.K., Holsboer-Trachsler E., Haghighi M., Brand S. Cholecystokinin (CCK) level is higher among first time suicide attempters than healthy controls, but is not associated with higher depression scores. Psychiatry Res. 2018; 266: 40–6. DOI: 10.1016/j.psychres.2018.05.031.
  45. Xiang D., Wang H., Sun S., Yao L., Li R., Zong X., Liu Z. GRP Receptor Regulates Depression Behavior via Interaction With 5-HT2a Receptor. Front. Psychiatry. 2020; 10: 1020. DOI: 10.3389/fpsyt.2019.01020.
  46. Flores-Burgess A., Millón C., Gago B., Garcia-Durán L., Cantero-Garcia N., Puigcerver A., Diaz-Cabiale Z. Galanin (1–15) Enhances the Behavioral Effects of Fluoxetine in the Olfactory Bulbectomy Rat, Suggesting a New Augmentation Strategy in Depression. Int. J. Neuropsychopharmacol. 2022; 25 (4): 307–18. DOI: 10.1093/ijnp/pyab089.
  47. Reul J.M., Holsboer F. On the role of corticotropin-releasing hormone receptors in anxiety and depression. Dialogues Clin. Neurosci. 2022; 4 (1): 31–46. DOI: 10.31887/DCNS.2002.4.1/jreul.
  48. Głombik K., Detka J., Budziszewska B. Venlafaxine and L-Thyroxine Treatment Combination: Impact on Metabolic and Synaptic Plasticity Changes in an Animal Model of Coexisting Depression and Hypothyroidism. Cells. 2021; 10 (6): 1394. DOI: 10.3390/cells10061394.
  49. Rana T., Behl T., Sehgal A., Singh S., Sharma N., Abdeen A., Bungau S. Exploring the role of neuropeptides in depression and anxiety. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2022; 114: 110478. DOI: 10.1016/J.PNPBP.2021.110478