Trace elements and the inflammatory process development: predictive possibilities

DOI: https://doi.org/10.29296/24999490-2024-01-04

G.D. Morozova(1), A.A. Logvinenko(2), A.R. Grabeklis(1, 3), S.E. Nikolaev(3), A.R. Sadykov(4), V.V. Yurasov(3), 4, A.V. Skalny(1, 3)
1-I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya str. 8/2, Moscow, 119991, Russian Federation;
2-Private healthcare institution «Central clinical hospital «RZD-Medicine», Volokolamskoe sh., 84, Moscow, 125367, Russian Federation;
3-Peoples Friendship University of Russia, Mikluho-Maklaya str. 6, Moscow, 117198, Russian Federation;
4-Laboratory of metabolomic diagnostics, Starokaluzhskoe sh. 63, Moscow, 117630, Russian Federation

Introduction. Late diagnosis of inflammatory pathologies leads to increased risks of chronicization of the process, generalization, development of complications, and reduced effectiveness of therapy. Routine methods of clinical laboratory diagnostics often have diagnostic value at the stage of already developed disease with pronounced clinical manifestations. Determination of blood serum trace elements may have prognostic value in the diagnosis of inflammatory diseases. The trace elements most extensively studied in the context of inflammation and immune defense are copper and zinc. The aim of the study. The aim of the study was to investigate the prognostic significance of determining copper and zinc concentrations in serum in the diagnosis of inflammation. Material and methods. Concentrations of CRP, ferritin, ceruloplasmin, leukocytes, neutrophils, fibrinogen, copper, and zinc were determined in 1153 examined people aged 18 to 86 years. Serum trace elements were determined by ICP-MS method, the rest of the parameters were measured by standard methods. ROC analysis was used to evaluate the prognostic significance of serum copper and zinc measurements. Positive predictive value and negative predictive value were also calculated for the laboratory tests. Results. It was shown that serum copper concentration in both men and women can be used as a predictor of abnormalities of CRP, ceruloplasmin, and fibrinogen. By abnormalities in serum copper concentration, it is possible to predict increased leukocytes in men and women; decreased leukocytes in men; and increased neutrophil levels in men and women. The prognostic significance of the laboratory test for serum zinc was found in relation to the detection of ferritin deficiency in women and ceruloplasmin deficiency in men and women. Conclusion. The results obtained in the study suggest the possible use of serum copper and zinc laboratory tests for prognostic purposes.
Keywords: 
inflammation, markers, blood serum, copper, zinc

Список литературы: 
  1. Князев О.В., Шкурко Т.В., Каграманова А.В., Веселов А.В., Никонов Е.Л. Эпидемиология воспалительных заболеваний кишечника. Современное состояние проблемы (обзор литературы). Доказательная гастроэнтерология. 2020; 9 (2): 66–73. DOI: 10.17116/dokgastro2020902166.
  2. [Kniazev O.V., Shkurko T.V., Kagramanova A.V., Veselov A.V., Nikonov E.L. Epidemiology of inflammatory bowel disease. State of the problem (review). Russian Journal of Evidence-Based Gastroenterology. 2020; 9 (2): 66–73. (in Russian) DOI: 10.17116/dokgastro2020902166]
  3. Wang R., Li Z., Liu S., Zhang D. Global, regional and national burden of inflammatory bowel disease in 204 countries and territories from 1990 to 2019: a systematic analysis based on the Global Burden of Disease Study 2019. BMJ Open. 2023; 13 (3): e065186. DOI: 10.1136/bmjopen-2022-065186.
  4. Pezzolo E., Naldi L. Epidemiology of major chronic inflammatory immune-related skin diseases in 2019. Expert Rev Clin Immunol. 2020; 16 (2): 155–66. DOI: 10.1080/1744666X.2020.1719833.
  5. Shah Gupta R., Koteci A., Morgan A., George P.M., Quint J.K. Incidence and prevalence of interstitial lung diseases worldwide: a systematic literature review. BMJ Open Respir Res. 2023; 10 (1): e001291. DOI: 10.1136/bmjresp-2022-001291.
  6. Hoyer N., Prior T.S., Bendstrup E., Shaker S.B. Diagnostic delay in IPF impacts progression-free survival, quality of life and hospitalisation rates. BMJ Open Respir Res. 2022; 9 (1): e001276. DOI: 10.1136/bmjresp-2022-001276.
  7. Pritchard D., Adegunsoye A., Lafond E., Pugashetti J.V., DiGeronimo R., Boctor N., Sarma N., Pan I., Strek M., Kadoch M., Chung J.H., Oldham J.M. Diagnostic test interpretation and referral delay in patients with interstitial lung disease. Respir Res. 2019; 20 (1): 253. DOI: 10.1186/s12931-019-1228-2.
  8. Lenti M.V., Miceli E., Cococcia S., Klersy C., Staiani M., Guglielmi F., Giuffrida P., Vanoli A., Luinetti O., De Grazia F., Di Stefano M., Corazza G.R., Di Sabatino A. Determinants of diagnostic delay in autoimmune atrophic gastritis. Aliment Pharmacol Ther. 2019; 50 (2): 167–75. DOI: 10.1111/apt.15317.
  9. Afify S.M., Hassan G., Seno A., Seno M. Cancer-inducing niche: the force of chronic inflammation. Br. J. Cancer. 2022; 127 (2): 193–201. DOI: 10.1038/s41416-022-01775-w.
  10. Franceschi C., Garagnani P., Parini P., Giuliani C., Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018; 14 (10): 576–90. DOI: 10.1038/s41574-018-0059-4.
  11. Frazzei G., van Vollenhoven R.F., de Jong B.A., Siegelaar S.E., van Schaardenburg D. Preclinical Autoimmune Disease: a Comparison of Rheumatoid Arthritis, Systemic Lupus Erythematosus, Multiple Sclerosis and Type 1 Diabetes. Front Immunol. 2022; 13: 899372. DOI: 10.3389/fimmu.2022.899372.
  12. Баряева О. Е., Флоренсов В. В., Бурдукова Н. В. Воспалительные заболевания женских половых органов. Иркутск: ИГМУ, 2019; 108.
  13. [Baryaeva O. E., Florensov V. V., Burdukova N. V. Inflammatory diseases of the female genital organs. Irkutsk: IGMU, 2019; 108 (in Russian)]
  14. Литвицкий П.Ф. Патофизиология. М.: ГЭОТАР-Медиа, 2015.
  15. [Litvickij P.F. Pathophysiology. М.: GEOTAR-Media, 2015 (in Russian)]
  16. Кумар В., Аббас А.К., Фаусто Н., Астер Дж. К. Основы патологии заболеваний по Роббинсу и Котрану. М.: Логосфера, 2014.
  17. [Kumar V., Abbas A.K., Fausto N., Aster Dzh. K. Robbins and Cotran Pathologic Basis of Disease. M.: Logosfera, 2014 (in Russian)]
  18. Хакимова Д.М., Хузин Ф.Ф. Введение в патологию. Повреждение клеток и тканей. Процессы адаптации. Казань: Казан. ун-т, 2021; 46.
  19. [Hakimova D.M., Huzin F.F. Introduction to Pathology. Cell and tissue damage. Processes of adaptation. Kazan: Kazan. un-t, 2021; 46 (in Russian)]
  20. Селихова М.С., Солтыс П.А. Современные акценты в диагностике воспалительных заболеваний органов малого таза. Архив акушерства и гинекологии им. В.Ф. Снегирева. 2020; 1: 37–42.
  21. [Selihova M.S., Soltys P.A. Current emphases in the diagnosis of inflammatory diseases of the pelvic organs. Arhiv akusherstva i ginekologii im. V.F. Snegireva. 2020; 1: 37–42 (in Russian)]
  22. Jayasooriya N., Baillie S., Blackwell J., Bottle A., Petersen I., Creese H., Saxena S., Pollok R.C. Systematic review with meta-analysis: Time to diagnosis and the impact of delayed diagnosis on clinical outcomes in inflammatory bowel disease. Aliment Pharmacol Ther. 2023; 57 (6): 635–52. DOI: 10.1111/apt.17370.
  23. Malik A., Hui C.P., Pennie R.A., Kirpalani H. Beyond the complete blood cell count and C-reactive protein: a systematic review of modern diagnostic tests for neonatal sepsis. Arch Pediatr Adolesc Med. 2003; 157 (6): 511–6. DOI: 10.1001/archpedi.157.6.511.
  24. Максимчук Т.П., Скальный А.В., Радыш И.В. Бионеорганическая химия с основами медицинской элементологии: учебник. М.: Российский ун-т дружбы народов, 2019; 624.
  25. [Maksimchuk T.P., Skalnyj A.V., Radysh I.V. Bioinorganic chemistry with the basics of medical elementology: a textbook. Rossijskij un-t druzhby narodov, 2019; 624 (in Russian)]
  26. Skalny A.V., Aschner M., Tinkov A.A. Zinc. Adv Food Nutr Res. 2021; 96: 251–310. DOI: 10.1016/bs.afnr.2021.01.003.
  27. Морозова Г.Д., Намиот Е.Д., Рылина Е.В., Коробейникова Т.В., Цыбулина А.А., Садыков А.Р., Юрасов В.В., Скальный А.В. Изучение взаимосвязи концентраций меди и цинка в сыворотке крови с маркерами воспаления. Молекулярная медицина, 2023; 5: 36–40 DOI: 10.29296/24999490-2023-05-05
  28. [Morozova G.D., Namiot E.D., Rylina E.V., Korobejnikova T.V., Cybulina A.A., Sadykov A.R., Yurasov V.V., Skalny A.V. Molekulyarnaya meditsina. Study of the relationship of copper and zinc concentrations in serum with markers of inflammation. 2023; 5: 36–40 (in Russian) DOI: 10.29296/24999490-2023-05-05]
  29. Жильцов И.В., Семенов В.М., Зенькова С.К. Основы медицинской статистики. Дизайн биомедицинских исследований: практическое руководство. Витебск: ВГМУ, 2013; 154.
  30. [Zhilcov I.V., Semenov V.M., Zenkova S.K. Fundamentals of medical statistics. Biomedical research design: a practical guide. Vitebsk: VGMU, 2013; 154 (in Russian)]
  31. Григорьев С.Г., Лобзин Ю.В., Скрипченко Н.В. Роль и место логистической регрессии и ROC-анализа в решении медицинских диагностических задач. Журнал инфектологии. 2016; 8 (4): 36–45. DOI: 10.22625/2072-6732-2016-8-4-36-45
  32. [Grigoryev S.G., Lobzin Yu.V., Skripchenko N.V. The role and place of logistic regression and ROC-analysis in solving medical diagnostic problems. Zhurnal infektologii. 2016; 8 (4): 36–45 (in Russian). DOI: 10.22625/2072-6732-2016-8-4-36-45]
  33. Костина О.В., Загреков В.И., Преснякова М.В., Пушкин А.С., Лебедев М.Ю., Ашкинази В.И. Взаимосвязь уровня цинка с патогенетически значимыми нарушениями гомеостаза у тяжелообожженных пациентов. Клиническая лабораторная диагностика. 2022; 67 (6): 330–3. DOI: 10.51620/0869-2084-2022-67-6-330-333
  34. [Kostina O.V., Zagrekov V.I., Presnyakova M.V., Pushkin A.S., Lebedev M.Yu., Ashkinazi V.I. Relationship of zinc level with pathogenetically significant homeostasis disorders in severely burned patients. Klinicheskaya Laboratornaya Diagnostika (Russian Clinical Laboratory Diagnostics). 2022; 67 (6): 330–3 (in Russian). DOI: 10.51620/0869- 2084-2022-67-6-330-333]
  35. Engin A.B., Engin E.D., Engin A. Can iron, zinc, copper and selenium status be a prognostic determinant in COVID-19 patients? Environ Toxicol Pharmacol. 2022; 95: 103937. DOI: 10.1016/j.etap.2022.103937.
  36. Yasui Y., Yasui H., Suzuki K., Saitou T., Yamamoto Y., Ishizaka T., Nishida K., Yoshihara S., Gohma I., Ogawa Y. Analysis of the predictive factors for a critical illness of COVID-19 during treatment – relationship between serum zinc level and critical illness of COVID-19. Int J. Infect Dis. 2020; 100: 230–6. DOI: 10.1016/j.ijid.2020.09.008.
  37. Pvsn K.K., Tomo S., Purohit P., Sankanagoudar S., Charan J., Purohit A., Nag V., Bhatia P., Singh K., Dutt N., Garg M.K., Sharma P., Misra S., Yadav D. Comparative Analysis of Serum Zinc, Copper and Magnesium Level and Their Relations in Association with Severity and Mortality in SARS-CoV-2 Patients. Biol Trace Elem Res. 2023; 201 (1): 23–30. DOI: 10.1007/s12011-022-03124-7.
  38. Xu X., Meng J., Fang Q. Prognostic value of serum trace elements Copper and Zinc levels in sepsis patients. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2020; 11: 1320–3. DOI: 10.3760/cma.j.cn121430-20200313-00216
  39. Irie Y., Hoshino K., Kawano Y., Mizunuma M., Hokama R., Morimoto S., Izutani Y., Ishikura H. Relationship between serum zinc level and sepsis-induced coagulopathy. Int J. Hematol. 2022; 15 (1): 87–95. DOI: 10.1007/s12185-021-03225-4.
  40. Laine J.T., Tuomainen T.P., Salonen J.T., Virtanen J.K. Serum copper-to-zinc-ratio and risk of incident infection in men: the Kuopio Ischaemic Heart Disease Risk Factor Study. Eur J Epidemiol. 2020; 35 (12): 1149–56. DOI: 10.1007/s10654-020-00644-1.
  41. Mezzaroba L., Simão A.N.C., Oliveira S.R., Flauzino T., Alfieri D.F., de Carvalho Jennings Pereira W.L, Kallaur A.P., Lozovoy M.A.B., Kaimen-Maciel D.R., Maes M., Reiche E.M.V. Antioxidant and Anti-inflammatory Diagnostic Biomarkers in Multiple Sclerosis: A Machine Learning Study. Mol. Neurobiol. 2020; 57 (5): 2167–78. DOI: 10.1007/s12035-019-01856-7.