Interleukins and metalloproteinases in the lungs of mice with BCG-granulomatosis with the injection of the liposomal form of dextrazide

DOI: https://doi.org/10.29296/24999490-2024-04-07

A.M. Sinyavskaya, A.V. Troitskii, T.N. Bystrova, E.G. Novikova, V.G. Selyatitskaya
Federal State Budget Scientific Institution “Federal Research Center of Fundamental and Translational Medicine”,
Timakova str., 2, Novosibirsk, 630117, Russian Federation

Introduction. An actual decision of the issue of safety and effective drug therapy improvement is the development of transport systems that allow to provide targeted delivery of drugs to target cells, while reducing their toxic effects. The aim of the work was to carry out a comparative study of the effects of isoniazid, composition of isoniazid with oxidized dextran (dextrazid), and liposomal form of dextrazid (LFD) on the levels of interleukins IL-6 and tumor necrosis factor-α (TNF-α), metalloproteinases MMP1 and MMP9, tissue inhibitor of proteinase TIMP1, volume density of destruction and lymphoid infiltrates in the lung parenchyma of mice with BCG-granulomatosis. Material and Methods. The study was performed on 100 male BALB/c mice, the tested substances were injected for 2 and 6 months. Lungs were fixed in 10% buffered formalin solution and subjected to standard histologic staging. To estimate the volume density of destructive changes and lymphoid infiltrates, the percent of area occupied by them was determined; in immunohistochemical study, the volume density of positively stained cells was determined. Results. It was shown that the effectiveness of dextrazide in comparison with isoniazid regarding the reduction of inflammatory processes activity in the lungs is higher, with the greatest effectiveness of LFD injected by inhalation. In response to isoniazid injection into mice, the levels of MMP1 and MMP9 decreased more than twice, and the level of TIMP1 increased; LFD injection intraperitoneally and inhaled caused a more pronounced effect. The level of destructive changes in the lung parenchyma of mice was maximal in mice in the comparison group and minimal in animals injected with LFD regardless of the form of its injection. Conclusion. The results of the study indicate that oxidized dextran in composition with isoniazid contributes to an additional reduction in the activity of inflammatory processes in the lungs of mice with BCG granulomatosis; placing the composition in liposomes enhances the anti-inflammatory effect and contributes to the reduction of destructive processes by decreasing MMP activity and increasing TIMP1 activity.
Keywords: 
isoniazid, compositions of isoniazid with oxidized dextran, BCG granulomatosis, inflammation, interleukins, matrix metalloproteinases

Список литературы: 
  1. Global tuberculosis report 2020. (Electronic resource). Geneva: World Health Organization 2020. Licence: CC BY-NC-SA 3.0 IGO. Available at: https://apps.who.int/irLs/bitstream/handle/10665/336069/9789240013131-eng.pdf. (accessed June 28, 2021)
  2. Lei S., Gu R., Ma X. Clinical perspectives of isoniazid-induced liver injury. Liver Research. 2021; 5 (2): 45–52. DOI:10.1016/j.livres.2021.02.001.
  3. Жарков А.С., Шкурупий В.А., Лядов Е.А., Певченко Б.В., Беляев В.Н., Троицкий А.В., Гуляева Е.П., Быстрова Т.Н., Куликов В.П. Оценка фармакокинетических параметров и токсичности противотуберкулезного средства на основе окисленного декстрана и гидразида изоникотиновой кислоты. Медицинский альянс. 2013; 11 (4): 1–7. [Zharkov A.S., Shkurupy W.A., Lyadov E.A., Pevchenko B.V., Belyaev V.N., Troitsky A.V., Gulyaeva E.P., Bystrova T.N., Kulikov V.P. Evaluation of pharmacokinetic parameters and toxicity of anti-tuberculosis drug based on oxidized dextran and the hydrazide of isonicotinic acid. Medical Alliance. 2013; 11 (4): 1–7 (In Russian)]
  4. Шкурупий В.А. Туберкулезный гранулематоз. Цитофизиология и адресная терапия. М.: Издательство РАМН, 2007; 536. ISBN:978-5-7901-0098-7. [Shkurupy V.A. Tuberculous granulomatosis. Cytophysiology and address therapy. Moscow: RAMS Publishing House, 2007: 536. ISBN:978-5-7901-0098-7 (In Russian)]
  5. Архипов С.А., Шкурупий В.А., Нещадим Д.В., Ахраменко Е.С., Троицкий А.В., Ильин Д.А., Гуляева Е.П. Исследование биосовместимости липосом с противотуберкулезным средством (декстразидом) в культуре макрофагов. Международный журнал прикладных и фундаментальных исследований. 2015; 9 (1): 74–8. [Arkhipov S.A., Shkurupy V.A., Neshchadim D.V., Akhramenko E.S., Troitsky A.V., Iljin D.A., Gulyaeva E.P. Study of biocompatibility liposomes with antituberculous drug (dekstrazid) in the macrophage cultures. Mezhdunarodnyj Zhurnal Prikladnyh i Fundamental'nyh Issledovanij. 2015; 9 (1): 74–8 (In Russian)]]
  6. Sinyavskaya A.M., Shkurupy V.A., Troitskiy A.V., Kovner A.M. Location of pulmonary mycobacteria tuberculosis and effectiveness of various dextrazide compositions in treatment of mice with BCG induced granulomatosis. Bulletin of Experimental Biology and Medicine. 2020; 169 (1): 63–6. DOI:10.1007/s10517-020-04825-6.
  7. Kumar N.P., Moideen K., Banurekha V.V., Nair D., Babu S. Plasma proinflammatory cytokines are markers of disease severity and bacterial burden in pulmonary tuberculosis. Open Forum Infectious Diseases. 2019; 6 (7): ofz257. DOI: 10.1093/ofid/ofz257.
  8. Boni F.G., Hamdi I., Kondi L.M., Shrestha K., Xie J. Cytokine storm in tuberculosis and IL-6 involvement. Infection, Genetics and Evolution. 2002; 97: 105166. DOI: 10.1016/j.meegid.2021.105166.
  9. Tiwari D., Martineau A.R. Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies. Seminars in Immunology. 2023; 65: 101672. DOI: 10.1016/j.smim.2022.101672.
  10. Kathamuthu G.R., Kumar N.P., Moideen K., Nair D., Banurekha V.V., Sridhar R., Baskaran D., Babu S. Matrix metalloproteinases and tissue inhibitors of metalloproteinases are potential biomarkers of pulmonary and extra-pulmonary tuberculosis. Frontiers in Immunology. 2020; 11: 419. DOI:10.3389/fimmu.2020.00419.
  11. Sabir N., Hussain T., Mangi M.H., Zhao D., Zhou X. Matrix metalloproteinases: expression, regulation and role in the immunopathology of tuberculosis. Cell Proliferation. 2019; 52 (4): e12649. DOI:10.1111/cpr.12649.
  12. Шкурупий В.А., Троицкий А.В., Лузгина Н.Г., Потапова О.М. Фармацевтическая композиция для лечения туберкулеза. Патент на изобретение №RU 2372914 С1. 2009. [Shkurupy V.A., Troitsky A.V., Lusgina N.G., Potapova O.M. Pharmaceutical composition for the treatment of tuberculosis. Patent for invention No. RU 2372914 С1. 2009 (In Russian)]
  13. Lillie R.D. Histopathologic technic and practical histochemistry. N.Y.: Blakiston. 1954: 501.
  14. Troitsky A.V., Cherdantseva L.A., Bystrova T.N., Novikova E.G., Ukah H.U., Grishin O.V., Lyadov E.A. Role of oxidized dextran in prevention and control of viral pneumonia and pulmonary fibrosis. Acta Scientific Medical Sciences. 2023; 7 (5): 164–72. DOI: 10.31080/ASMS.2023.07.1558.
  15. Novikova E.G., Troitsky A.V., Cherdantseva L.A., Bystrova T.N., Selyatitskaya V.G. Experimental evaluation of the therapeutic efficacy of oxidized dextran in a model of spermatogenesis disorders in rats under the action of the endotoxin escherichia coli. Acta Scientific Medical Sciences. 2023; 7 (5): 84–90. DOI:10.31080/ASMS.2023.07.1543.
  16. Chen Y., Wang J., Ge P., Cao D., Miao B., Robertson I., Zhou X., Zhang L., Chen H., Guo A. Tissue inhibitor of metalloproteinases 1, a novel biomarker of tuberculosis. Molecular Medicine Reports. 2017; 15 (1): 483–7. DOI:10.3892/mmr.2016.5998.
  17. Горбик В.С., Шпрах З.С., Козлова Ж.М., Салова В.Г. Липосомы как система таргетной доставки лекарственных средств (обзор). Российский биотерапевтический журнал. 2021; 20 (1): 33–41. DOI:10.17650/1726-9784-2021-20-1-33-41. [Gorbik V.S., Shprakh Z.S., Kozlova Z.M., Salova V.G. Liposomes as a targeted delivery system of drugs (review). Russian J. of Biotherapy. 2021; 20 (1): 33–41. DOI: 10.17650/1726-9784-2021-20-1-33-41. (In Russian)]