DIFFERENT CONCENTRATIONS OF PEROXYNITRITE CAUSE A UNIQUE CELLULAR RESPONSE OF ENDOTHELIOCYTES IN VITRO

DOI: https://doi.org/10.29296/24999490-2024-04-09

N.V. Korotkova, R.E. Kalinin, I.A. Suchkov, A.S. Zakharov, N.D. Mzhavanadze, A.А. Nikiforov
Federal State Budgetary Educational Institution of Higher Education “Ryazan State Medical University”
Ministry of Health of the Russian Federation, Vysokovoltnaya, 9, Ryazan, 390026, Russian Federation

Introduction. The study of the effect of peroxynitrite, as a product of nitric oxide (II), on the culture of endothelial cells in vitro can contribute to fundamental ideas about the violation of the adhesive function of the endothelium when changing the synthesis of nitric oxide. The aim of the study. To study the effect of peroxynitrite in various concentrations on the metabolic and migration activity of endotheliocytes, as well as on the expression of endothelium-specific proteins-selectin Р and Е, as an indicator of the adhesive function of the endothelium. Methods. The cytotoxicity of peroxynitrite in various concentrations was assessed using the MTT test. The migration and proliferative activity of endotheliocytes was studied by a scratch test. The concentration of sP- and sЕ-selectins was determined using the ELISA sandwich method in the supernatant of endotheliocytes culture. Results. A statistically significant increase in the metabolic activity of endothelial cells was revealed during a 30-minute incubation with peroxynitrite at concentrations of 0,0025, 0,0075 and 0,01 mM. A statistically significant decrease in the migration activity of endothelial cells was revealed after a 30-minute incubation with peroxynitrite at concentrations of 0,0025 and 0,1 mM, both in the first 12 and within 24 hours. A multidirectional effect of peroxynitrite at various concentrations on the level of sP and sE selectins in the cell culture supernatant was revealed: a statistically significant decrease in sE-selectin after 30-minute incubation with peroxynitrite solutions at concentrations of 0,0025, 0,1 and 1,0 mM; as well as a statistically significant increase in sP-selectin during 30-minute incubation with peroxynitrite solutions of 0,0025 and 0,1 mM. Conclusion. Peroxynitrite for endothelial cells can act as a signaling molecule, stimulating or suppressing mitochondrial and migratory activity, and also as a cytotoxic agent, causing cell death. In addition, at various concentrations it is capable of influencing either the synthesis of endothelium-specific selectin proteins or the proteolytic shedding of the extracellular domains of these proteins, which requires further study.
Keywords: 
peroxynitrite, selectins, endothelium, HUVEC

Список литературы: 
  1. Пожилова Е.В., Новиков В.Е., Левченкова О.С. Активные формы кислорода в физиологии и патологии клетки. Вестник Смоленской государственной медицинской академии. 2015; 14 (2): 13–22. [Pozhilova E.V., Novikov V.E., Levchenkova O.S. Aktivnye formy kisloroda v fiziologii i patologii kletki. Vestnik Smolenskoj gosudarstvennoj medicinskoj akademii. 2015; 14 (2): 13–22 (in Russian)].
  2. Ferrer-Sueta G., Campolo N., Trujillo M., Bartesaghi S., Carballal S., Romero N., Alvarez B., Radi R. Biochemistry of peroxynitrite and protein tyrosine nitration. Chem. Rev.  2018; 118 (3): 1338–408. DOI: 10.1021/acs.chemrev.7b00568
  3. Пожилова Е.В., Новиков В.Е. Синтаза оксида азота и эндогенный оксид азота в физиологии и патологии клетки. Вестник Смоленской государственной медицинской академии. 2015; 14 (4): 35–41. [Pozhilova E.V., Novikov V.E. Sintaza oksida azota i jendogennyj oksid azota v fiziologii i patologii kletki. Vestnik Smolenskoj gosudarstvennoj medicinskoj akademii. 2015; 14 (4): 35–41 (in Russian)].
  4. Tvaroška I., Selvaraj C., Koča J. Selectins – The Two Dr. Jekyll and Mr. Hyde Faces of Adhesion Molecules – A Review. Molecules. 2020; 25 (12): 2835.
  5. Калинин Р.Е., Короткова Н.В., Сучков И.А., Мжаванадзе Н.Д., Рябков А.Н. Селектины и их участие в патогенезе сердечно-сосудистых заболеваний. Казанский медицинский журнал. 2022; 103 (4):617–27. DOI: 10.17816/KMJ2022-617 [Kalinin R.E., Korotkova N.V., Suchkov I.A., Mzhavanadze N.D., Ryabkov A.N. Selektiny i ih uchastie v patogeneze serdechno-sosudistyh zabolevanij. Kazanskij medicinskij zhurnal. 2022; 103 (4): 617–27. DOI: https://doi.org/10.17816/KMJ2022-617 (in Russian)].
  6. . Калинин Р.Е., Сучков И.А., Климентова Э.А., Егоров А.А., Карпов В.В. Биомаркеры апоптоза и пролиферации клеток в диагностике прогрессирования атеросклероза в различных сосудистых бассейнах. Российский медико-биологический вестник им. академика И.П. Павлова. 2022; 30 (2): 243–52. DOI: 10.17816/PAVLOVJ88938 [Kalinin R.E., Suchkov I.A., Klimentova E.A., Egorov A.A., Karpov V.V. Biomarkery apoptoza i proliferacii kletok v diagnostike progressirovaniya ateroskleroza v razlichnyh sosudistyh bassejnah. Rossijskij mediko-biologicheskij vestnik im. akademika I.P. Pavlova. 2022; 30 (2): 243–52. DOI: 10.17816/PAVLOVJ88938].
  7. . Мжаванадзе Н.Д., Короткова Н.В., Стрельникова Е.А., Суров И.Ю., Иванова П.Ю., Боженова А.Д. Эндотелий in vivo и in vitro. Часть 2: особенности и перспективы лабораторной работы с эндотелиоцитами. Наука молодых (Eruditio Juvenium). 2020; 8 (3): 407–21. DOI:10.23888/HMJ202083407-421. [Мzhavanadze N.D., Korotkova N.V., Strel'nikova E.A., Surov I.YU., Ivanova P.YU., Bozhenova A.D. Endotelij in vivo i in vitro. CHast' 2: osobennosti i perspektivy laboratornoj raboty s endoteliocitami. Nauka molodyh (Eruditio Juvenium). 2020; 8 (3): 407–21. DOI:10.23888/HMJ202083407-421(in Russian)].
  8. Лобачев В.Л., Рудаков Е.С. Химия пероксинитрита. Кинетика и механизмы реакций. Успехи химии. 2006; 75 (5): 422–44. [Lobachev V.L., Rudakov E.S. Himiya peroksinitrita. Kinetika i mekhanizmy reakcij. Uspekhi himii. 2006; 75 (5): 422–44 (in Russian)].
  9. Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: Redox pathways in molecular medicine. Proc Natl Acad Sci USA. 2018; 115 (23): 5839–48. DOI: 10.1073/pnas.1804932115.
  10. Weber M., Mackenzie A.B, Bull S.D., James T.D. Fluorescence-Based Tool To Detect Endogenous Peroxynitrite in M1-Polarized Murine J774.2 Macrophages. Anal Chem 2018; 90 (17): 10621–7. DOI: 10.1021/acs.analchem.8b03035.
  11. . Bartesaghi S., Radi R.. Fundamentals on the biochemistry of peroxynitrite and protein tyrosine nitration. Redox. Biol. 2018; 14: 618–25. DOI: 10.1016/j.redox.2017.09.009.
  12. . Bellezza I., Giambanco I., Minelli A., Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim. Biophys. Acta Mol. Cell Res. 2018; 1865 (5): 721–33. DOI: 10.1016/j.bbamcr.2018.02.010.
  13. . Scarpulla R.C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol. Rev. 2008; 88 (2): 611–38. DOI: 10.1152/physrev.00025.2007.
  14. . Baird L., Yamamoto M. The Molecular Mechanisms Regulating the KEAP1-NRF2 Pathway. Mol. Cell Biol. 2020; 40 (13): e00099-20. DOI: 10.1128/MCB.00099-20.
  15. . Kopacz A., Kloska D., Forman H.J., Jozkowicz A. Beyond repression of Nrf2: An update on Keap1. Free Radic. Biol. Med. 2020; 157: 63–74. DOI: 10.1016/j.freeradbiomed.2020.03.023.
  16. . Jiang W.G., Douglas-Jones A., Mansel R.E. Expression of peroxisome-proliferator activated receptor-gamma (PPARgamma) and the PPARgamma co-activator, PGC-1, in human breast cancer correlates with clinical outcomes. Int. J. Cancer. 2003; 106 (5): 752–7. DOI: 10.1002/ijc.11302.
  17. . Lee H.J., Su Y., Yin P.H., Lee H.C., Chi C.W. PPAR(gamma)/PGC-1(alpha) pathway in E-cadherin expression and motility of HepG2 cells. Anticancer Res. 2009; 29 (12): 5057–63.
  18. . Mitchell S., Vargas J., Hoffmann A. Signaling via the NFκB system. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016; 8 (3): 227–41. DOI: 10.1002/wsbm.1331.
  19. . Yang L., Hu X., Mo Y.Y. Acidosis promotes tumorigenesis by activating AKT/NF-κB signaling. Cancer Metastasis Rev. 2019; 38 (1–2): 179–88. DOI: 10.1007/s10555-019-09785-6.