МИКРОРНК ПРИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ

DOI: https://doi.org/None

А.Н. Ширшова (1), научный сотрудник, В.Н. Аушев (2), кандидат медицинских наук, М.Л. Филипенко (1), кандидат биологических наук, Н.Е. Кушлинский (2), член-корреспондент РАН, профессор 1 -Институт химической биологии и фундаментальной медицины СО РАН, Российская Федерация, 630090, Новосибирск, пр. акад. Лаврентьева, д. 8; 2 -Российский онкологический научный центр им. Н.Н. Блохина, Российская Федерация, 115478, Москва, Каширское шоссе, д. 24 E-mail: [email protected]

Открытие механизма регуляции экспрессии генов малыми некодирующими РНК – микроРНК – одно из наиболее значимых событий молекулярной биологии последних лет. МикроРНК-интерференция является важнейшим и универсальным механизмом управления основными процессами в клетках эукариот, включая пролиферацию, дифференцировку, апоптоз, эпителиальномезенхимальный переход, сигнальную трансдукцию, метилирование ДНК и другие, нарушения которых могут приводить к злокачественной трансформации. В лекции представлены данные исследований роли микроРНК в патогенезе злокачественных опухолей различных локализаций: рак желудка, молочной железы, яичников, легкого, щитовидной железы, гемобластозах. Показана ассоциация профилей экспрессии специфических микроРНК с клиническим течением заболевания, ответом на химиотерапию, а также с общей и безрецидивной выживаемостью. Обсуждаются вопросы таргетной терапии с использованием агонистов и антагонистов микроРНК.
Ключевые слова: 
микроРНК, рак желудка, молочной железы, яичников, легкого, щитовидной железы, гемобластозы, прогноз
Для цитирования: 
Ширшова А.Н., Аушев В.Н., Филипенко М.Л., Кушлинский Н.Е. МИКРОРНК ПРИ ОНКОЛОГИЧЕСКИХ ЗАБОЛЕВАНИЯХ. Молекулярная медицина, 2015; (2): -

Список литературы: 
  1. Iorio M.V., Ferracin M., Liu C.G. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005; 65 (16): 7065–70.
  2. Fareed K.R., Kaye P., Soomro I.N. et al. Biomarkers of response to therapy in oesophago-gastric cancer. Gut. 2009; 58 (1): 127–43.
  3. Okusa Y., Ichikura T., Mochizuki H. Prognostic impact of stromal cell-derived urokinase-type plasminogen activator in gastric carcinoma. Cancer. 1999. 85 (5): 1033–8.
  4. Xiangming C., Hokita S., Natsugoe S. et al. p21 expression is a prognostic factor in patients with p53-negative gastric cancer. Cancer Lett. 2000; 148 (2): 181–8.
  5. Kido S., Kitadai Y., Hattori N. et al. Interleukin 8 and vascular endothelial growth factor – prognostic factors in human gastric carcinomas? Eur. J. Cancer. 2001; 37 (12): 1482–7.
  6. Shibata A., Parsonnet J., Longacre T.A. et al. CagA status of H.pylori infection an dp53 gene mutations in gastric adenocarcinoma // Carcinogenesis. 2002; 23 (3): 419-24.
  7. Resnick M.B., Gavilanez M., Newton E. et al. Claudin expression in gastric adenocarcinomas: a tissue microarray study with prognostic correlation. Hum. Pathol. 2005; 36 (8): 886–92.
  8. Linder N., Haglund C., Lundin M. et al. Decreased xanthine oxidoreductase is a predictor of poor prognosis in early-stage gastric cancer. J. Clin. Pathol. 2006; 59 (9): 965–71.
  9. Yamada Y., Arao T., Gotoda T. et al. Identification of prognostic biomarkers in gastric cancer using endoscopic biopsy samples. Cancer Sci. 2008; 99 (11): 2193–9.
  10. Li X., Zhang Y., Zhang Y. et al. Survival prediction of gastric cancer by a seven-microRNA signature. Gut. 2010; 59 (5): 579–85.
  11. Liu R., Zhang C., Hu Z. et al. A five-microRNA signature identified from genome-wide serum microRNA expression profiling serves as a fingerprint for gastric cancer diagnosis. Eur. J. Cancer. 2011; 47 (5): 784–91.
  12. Tsujiura M., Ichikawa D., Komatsu S. et al. Circulating microRNAs in plasma of patients with gastric cancers. Br. J. Cancer. 2010; 102 (7): 1174–9.
  13. Buscaglia L.E., Li Y. Apoptosis and target genes of microRNA-21. Chi. J. Cancer. 2011; 30 (6): 371–80.
  14. Xu Y., Sun J., Xu J. et al. miR-21 Is a promising novel biomarker for lymph node metastasis in patients with gastric cancer. Gastroenterol. Res. Pract. 2012; 2012: 1–5.
  15. Wang Y.Y., Ye Z.Y., Zhao Z.S. et al. Clinicopathologic significance of miR-10b expression in gastric carcinoma. Hum. Pathol. 2013; 44 (7): 1278–85.
  16. Kim K., Lee H.C., Park J.L. et al. Epigenetic regulation of microRNA-10b and targeting of oncogenic MAPRE1 in gastric cancer. Epigenetics. 2011; 6 (6): 740–51.
  17. Kogo R., Mimori K., Tanaka F. et al. Clinical significance of miR-146a in gastric cancer cases. Clin. Cancer Res. 2011; 17 (13): 4277–84.
  18. Ueda T., Volinia S., Okumura H. et al. Relation between microRNA expression and progression and prognosis of gastric cancer: a microRNA expression analysis. Lancet Oncol. 2010; 11 (2): 136–46.
  19. Nishida N., Mimori K., Fabbri M. et al. MicroRNA-125a-5p is an independent prognostic factor in gastric cancer and inhibits the proliferation of human gastric cancer cells in combination with trastuzumab. Clin. Cancer Res. 2011; 17 (9): 2725–33.
  20. He X.P., Shao Y., Li X.L. et al. Downregulation of miR-101 in gastric cancer correlates with cyclooxygenase-2 overexpression and tumor growth. FEBS J. 2012; 279 (22): 4201–12.
  21. Zhang X., Yan Z., Zhang J. et al. Combination of hsa-miR-375 and hsa-miR-142-5p as a predictor for recurrence risk in gastric cancer patients following surgical resection. Ann. Oncol. 2011; 22 (10): 2257–66.
  22. Singh R., Mo Y.-Y. Role of microRNAs in breast cancer. Cancer Biol. Ther. 2013; 14 (3): 201–12.
  23. Qian B., Katsaros D., Lu L. et al. High miR-21 expression in breast cancer associated with poor disease-free survival in early stage disease and high TGF-beta1. Breast Cancer Res. Treat. 2009; 117 (1): 131–40.
  24. Radojicic J., Zaravinos A., Vrekoussis T. et al. MicroRNA expression analysis in triple-negative (ER, PR and Her2/neu) breast cancer. Cell Cycle. 2011; 10 (3): 507–17.
  25. Kong W., He L., Richards E.J. et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 2014; 33 (6): 679–89.
  26. Sempere L.F., Christensen M., Silahtaroglu A. et al. Altered MicroRNA expression confined to specific epithelial cell subpopulations in breast cancer. Cancer Res. 2007; 67 (24): 11612–20.
  27. Zhao Y., Deng C., Lu W. et al. let-7 microRNAs induce tamoxifen sensitivity by down regulation of estrogen receptor α signaling in breast cancer. Mol. Med. 2011; 17 (11–12): 1233–41.
  28. O’Day E., Lal A. MicroRNAs and their target gene networks in breast cancer. Breast Cancer Res. 2010; 12 (2): 201–11.
  29. Gregory P.A., Bert A.G., Paterson E.L. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nat. Cell Biol. 2008; 10 (5). 593–601.
  30. Greene S.B., Herschkowitz J.I., Rosen J.M. Small players with big roles: microRNAs as targets to inhibit breast cancer progression. Curr. Drug. Targets. 2010; 11 (9): 1059–73.
  31. Seike M., Goto A., Okano T. et al. MiR-21 is an EGFR-regulated anti-apoptotic factor in lung cancer in never-smokers. Proc. Natl. Acad. Sci. USA. 2009; 106 (29): 12085–90.
  32. Qi J., Mu D. MicroRNAs and lung cancers: from pathogenesis to clinical implications. Front Med. 2012; 6 (2): 134–55.
  33. Acunzo M., Visone R., Romano G. et al. МiR-130a targets MET and induces TRAIL-sensitivity in NSCLC by downregulating miR-221 and 222. Oncogene. 2012; 31 (5): 634–42.
  34. He H., Jazdzewski K., Li W. et al. The role of microRNA genes in papillary thyroid carcinoma. Proc. Natl. Acad. Sci. USA. 2005; 102 (52): 19075–80.
  35. Hayashita Y., Osada H., Tatematsu Y. et al. A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res. 2005; 65 (21): 9628–32.
  36. Izzotti A., Calin G.A., Arrigo P. et al. Downregulation of microRNA expression in the lungs of rats exposed to cigarette smoke. FASEB J. 2009; 23 (3): 806–12.
  37. Takamizawa J., Konishi H., Yanagisawa K. et al. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res. 2004; 64 (11): 3753–6.
  38. Zhu W., Xu H., Zhu D. et al. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP. Cancer Chemother. Pharmacol. 2012; 69 (3): 723–31.
  39. Bandi N., Zbinden S., Gugger M. et al. miR-15a and miR-16 are implicated in cell cycle regulation in a Rb-dependent manner and are frequently deleted or down-regulated in non-small cell lung cancer. Cancer Res. 2009; 69 (13): 5553–9.
  40. Ranade A.R., Cherba D., Sridhar S. et al. MicroRNA 92a-2*: a biomarker predictive for chemoresistance and prognostic for survival in patients with small cell lung cancer. J. Thorac. Oncol. 2010; 5 (8): 1273–8.
  41. Tian T., Shu Y., Chen J. et al. A functional genetic variant in microRNA-196a2 is associated with increased susceptibility of lung cancer in Chinese. Cancer Epidemiol. Biomarkers Prev. 2009; 18 (4): 1183–7.
  42. Chin L.J., Ratner E., Leng S. et al. A SNP in a let-7 microRNA complementary site in the KRAS 3’ untranslated increases non-small cell lung cancer risk. Cancer Res. 2008; 68 (20): 8535–40.
  43. Rotunno M., Zhao Y., Bergen A.W. et al. Inherited polymorphisms in the RNA-mediated interference machinery affect microRNA expression and lung cancer survival. Br. J. Cancer. 2010; 103 (12): 1870–4.
  44. Landi D., Gemignani F., Naccarati A. et al. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis. 2008; 29 (3): 579–84.
  45. Michael M.Z., O’ Connor S.M., van Holst Pellekaan N.G. et al. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol. Cancer Res. 2003; 1 (12): 882–91.
  46. Schee K., Fodstad O., Flatmark K. Micrornas as biomarkers in colorectal cancer. Am. J. Pathol. 2010; 177 (4): 1592–9.
  47. Schetter A.J., Okayama H., Harris C.C. The Role of microRNAs in сolorectal сancer. Cancer J. 2012; 18 (3): 244–52.
  48. Nagel R., le Sage C., Diosdado B. et al. Regulation of the adenomatous polyposis coli gene by the miR-135 family in colorectal cancer. Cancer Res. 2008; 68 (14): 5795–802.
  49. Valeri N., Gasparini P., Fabbri M. et al. Modulation of mismatch repair and genomic stabilityby miR-155. Proc. Natl. Acad. Sci. USA. 2010; 107 (15): 6982–7.
  50. Lanza G., Ferracin M., Gafà R. et al. mRNA/microRNA gene expression profile in microsatellite unstable colorectal cancer. Mol. Cancer. 2007; 6 (54): 1–11.
  51. Mosakhani N., Sarhadi V.K., Borze I. et al. MicroRNA profiling differentiates colorectal cancer according to KRAS status. Genes Chromosomes Cancer. 2012; 51 (1): 1–9.
  52. Wu J., Wu G., Lv L., Ren Y.F. et al. MicroRNA-34a inhibits migration and invasion of colon cancer cells via targeting to Fra-1. Carcinogenesis. 2012; 33 (3): 519–28.
  53. Braun C.J., Zhang X., Savelyeva I. et al. p53-Responsive micrornas 192 and 215 are capable of inducing cell cycle arrest. Cancer Res. 2008; 68 (24): 10094–104.
  54. Tetzlaff M.T., Liu A., Xu X. et al. Differential expression of miRNAs in papillary thyroid carcinoma compared to multinodular goiter using formalin fixed paraffin embedded tissues. Endocr. Pathol. 2007; 18 (3): 163–73.
  55. Nikiforova M.N., Tseng G.C., Steward D. et al. MicroRNA expression profiling of thyroid tumors: biological significance and diagnostic utility. J. Clin. Endocrinol. Metab. 2008; 93 (5): 1600–8.
  56. Menon M.P., Khan A. micro-RNAs in thyroid neoplasms: molecular, diagnostic and therapeutic implications. J. Clin. Pathol. 2009; 62 (11): 978–85.
  57. Sheu S.Y., Grabellus F., Schwertheim S. et al. Differential miRNA expression profiles in variants of papillary thyroid carcinoma and encapsulated follicular thyroid tumours. Br. J. Cancer. 2010; 102 (2): 376–82.
  58. Weber F., Teresi R.E., Broelsch C.E. et al. A limited set of human microRNA is deregulated in follicular thyroid carcinoma. J. Clin. Endocrinol. Metab. 2006; 91 (9): 3584–91.
  59. Pallante P., Visone R., Ferracin M. et al. MicroRNA deregulation in human thyroid papillary carcinomas. Endocr. Relat. Cancer. 2006; 13 (2): 497–508.
  60. Mian C., Pennelli G., Fassan M. et al. MicroRNA profiles in familial and sporadic medullary thyroid carcinoma: preliminary relationships with RET status and outcome. Thyroid. 2012; 22 (9): 890–6.
  61. Visone R., Pallante P., Vecchione A. et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene. 2007; 26 (54): 7590–5.
  62. Fuziwara C.S., Kimura E.T. MicroRNA deregulation in anaplastic thyroid cancer biology. Int. J. Endocrinol. 2014; 2014: article 743450.
  63. Frezzetti D., de Menna M., Zoppoli P. et al. Upregulation of miR-21 by Ras in vivo and its role in tumor growth. Oncogene. 2011; 30 (3): 275–86.
  64. Mitomo S., Maesawa C., Ogasawara S. et al. Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci. 2008; 99 (2): 280–6.
  65. Yip L., Kelly L., Shuai Y.et al. MicroRNA signature distinguishes the degree of aggressiveness of papillary thyroid carcinoma. Ann. Surg. Oncol. 2011; 18 (7): 2035–41.
  66. Abraham D., Jackson N., Gundara J.S et al. MicroRNA profiling of sporadic and hereditary medullary thyroid cancer identifies predictors of nodal metastasis, prognosis, and potential therapeutic targets. Clin. Cancer Res. 2011; 17 (14): 4772–81.
  67. Cahill S., Smyth P., Finn S.P. et al. Effect of ret/PTC 1 rearrangement on transcription and post-transcriptional regulation in a papillary thyroid carcinoma model. Mol. Cancer. 2006; 5: article 70.
  68. Lawrie C.H. MicroRNAs in hematological malignancies. Blood Rev. 2013; 27 (3): 143–54.
  69. Cimmino A., Calin G.A., Fabbri M. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA. 2005; 102 (39): 13944–9.
  70. Fabbri M., Bottoni A., Shimizu M. et al. Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA. 2011; 305 (1): 59–67.
  71. Pekarsky Y., Santanam U., Cimmino A. et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res. 2006; 66 (24): 11590–3.
  72. Starczynowski D.T., Morin R., McPherson A. et al. Genome-wide identification of human microRNAs located in leukemia-associated genomic alterations. Blood. 2011; 117 (2): 595–607.
  73. Starczynowski D.T., Kuchenbauer F., Argiropoulos B. et al. Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype. Nat. Med. 2010; 16 (1): 49–58.
  74. Bousquet M., Quelen C., Rosati R. et al. Myeloid cell differentiation arrest by miR-125b-1 in myelodysplastic syndrome and acute myeloid leukemia with the t(2;11)(p21;q23) translocation. J. Exper. Med. 2008; 205 (11): 2499–506.
  75. Chapiro E., Russell L.J., Struski S. et al. A new recurrent translocation t(11;14)(q24;q32) involving [email protected] and miR-125b-1 in B-cell progenitor acute lymphoblastic leukemia. Leukemia. 2010; 24 (7): 1362–4.
  76. Bousquet M., Harris M.H., Zhou B. et al. MicroRNA miR-125b causes leukemia. Proc. Natl. Acad. Sci. USA. 2010; 107 (50): 21558–63.
  77. Agirre X., Jiménez-Velasco A., San José-Enériz E. et al. Down-regulation of hsa-miR-10a in chronic myeloid leukemia CD34+ cells increases USF2-mediated cell growth. Mol. Cancer Res. 2008; 6 (12): 1830–40.
  78. Bueno M.J., Pérez de Castro I., Gómez de Cedrón M. et al. Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell. 2008; 13 (6): 496–506.
  79. Venturini L., Battmer K., Castoldi M. et al. Expression of the miR-17-92 polycistron in chronic myeloid leukemia (CML) CD34+ cells. Blood. 2007; 109 (10): 4399–405.
  80. Mi S., Lu J., Sun M. et al. MicroRNA expression signatures accurately discriminate acute lymphoblastic leukemia from acute myeloid leukemia. Proc. Natl. Acad. Sci. USA. 2007; 104 (50): 19971–6.
  81. Schotte D., De Menezes R.X., Akbari Moqadam F. et al. MicroRNA characterize genetic diversity and drug resistance in pediatric acute lymphoblastic leukemia. Haematologica. 2011; 96 (5): 703–11.
  82. Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br. J. Haematol. 2012; 156 (6): 744–56.
  83. Dorsett Y., McBride K.M., Jankovic M. et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity. 2008; 28 (5): 630–8.
  84. Eis P.S., Tam W., Sun L. et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. USA. 2005; 102 (10): 3627–32.
  85. Kluiver J., Poppema S., de Jong D. et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol. 2005; 207 (2): 243–9.
  86. Costinean S., Zanesi N., Pekarsky Y. et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc. Natl. Acad. Sci. USA. 2006; 103 (18): 7024–9.
  87. Lawrie C.H., Soneji S., Marafioti T. et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int. J. Cancer. 2007; 121 (5): 1156–61.
  88. O’Connell R.M., Chaudhuri A.A., Rao D.S., Baltimore D. Inositol phosphatase SHIP1 is a primary target of miR-155. Proc. Natl. Acad. Sci. USA. 2009; 106 (17): 7113–8.
  89. Yamanaka Y., Tagawa H., Takahashi N. et al. Aberrant overexpression of microRNAs activate AKT signaling via down-regulation of tumor suppressors in natural killer-cell lymphoma/leukemia. Blood. 2009; 114 (15): 3265–75.
  90. Pedersen I.M., Otero D., Kao E. et al. Onco-miR-155 targets SHIP1 to promote TNFalpha-dependent growth of B cell lymphomas. EMBO Mol. Med. 2009; 1 (5): 288–95.
  91. O’Connell R.M., Rao D.S., Chaudhuri A.A. et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J. Exper. Med. 2008; 205 (3): 585–94.
  92. Roehle A., Hoefig K.P., Repsilber D. et al. MicroRNA signatures characterize diffuse large B-cell lymphomas and follicular lymphomas. Br. J. Haematol. 2008; 142 (5): 732–44.
  93. Lawrie C.H., Chi J., Taylor S. et al. Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma. J. Cell. Mol. Med. 2009; 13 (7): 1248–60.
  94. Pichiorri F., Suh S.S., Ladetto M. et al. MicroRNAs regulate critical genes associated with multiple myeloma pathogenesis. Proc. Natl. Acad. Sci. USA. 2008; 105 (35): 12885–90.
  95. Löffler D., Brocke-Heidrich K., Pfeifer G. et al. Interleukin-6 dependent survival of multiple myeloma cells involves the Stat3-mediated induction of microRNA-21 through a highly conserved enhancer. Blood. 2007; 110 (4): 1330–3.
  96. Wang X., Li C., Ju S. et al. Myeloma cell adhesion to bone marrow stromal cells confers drug resistance by microRNA-21 up-regulation. Leuk. Lymphoma. 2011; 52 (10): 1991–8.
  97. Dimopoulos K., Gimsing P., Gronbaek K. Aberrant microRNA expression in multiple myeloma. Eur. J. Haematol. 2013; 91 (2): 95–105.
  98. Chen R.W., Bemis L.T., Amato C.M. et al. Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood. 2008; 112 (3): 822–9.
  99. Deshpande A., Pastore A., Deshpande A.J. et al. 3’UTR mediated regulation of the cyclin D1 proto-oncogenem. Cell Cycle. 2009; 8 (21): 3584–92.
  100. Rao E., Jiang C., Ji M. et al. The miRNA-17 approximately 92 cluster mediates chemoresistance and enhances tumor growth in mantle cell lymphoma via PI3K/AKT pathway activation. Leukemia. 2012; 26 (5): 1064–72.
  101. Van Vlierberghe P., De Weer A., Mestdagh P. et al. Comparison of miRNA profiles of microdissected Hodgkin/Reed-Sternberg cells and Hodgkin cell lines versus CD77+ B-cells reveals a distinct subset of differentially expressed miRNAs. Br. J. Haematol. 2009; 147 (5): 686–90.