ЧАСТОТА НОСИТЕЛЬСТВА АЛЛЕЛЬНЫХ ВАРИАНТОВ CYP2C19*2, CYP2C19*3, АССОЦИИРОВАННЫХ С РАЗВИТИЕМ РЕЗИСТЕНТНОСТИ К КЛОПИДОГРЕЛУ, ПРИ ОСТРОМ КОРОНАРНОМ СИНДРОМЕ У ПАЦИЕНТОВ РУССКОЙ И ЯКУТСКОЙ ЭТНИЧЕСКИХ ГРУПП

DOI: https://doi.org/10.29296/24999490-2018-02-08

К.Б. Мирзаев(1), кандидат медицинских наук, Д.С. Федоринов(2), Д.А. Сычев(1), доктор медицинских наук, профессор, член-корреспондент РАН, Н.Р. Максимова(3), доктор медицинских наук, Я.В. Чертовских(4), Я.В. Попова(4), К.C. Таюрская(4), З.А. Рудых(4) 1-Российская медицинская академия непрерывного профессионального образования, Российская Федерация, 123242, Москва, Баррикадная ул., д. 2; 2-Первый Московский государственный медицинский университет им. И.М. Сеченова, Российская Федерация, 119992, Москва, Малая Трубецкая ул., д. 8, стр. 2; 3-Северо-Восточный федеральный университет им. М.К. Аммосова, Российская Федерация, 677007, Якутск, ул. Кулаковского, д. 42; 4-Центр персонализированной медицины, ГБУ РС (Я) «Республиканская больница №3», Российская Федерация, 677027, Якутск, улица Горького, д. 94 E-mail: Fedorinov.denis@gmail.com

Введение. Генетический полиморфизм изофермента CYP2C19 (аллельные варианты *2, *3, *17) цитохрома Р450, участвующего в печеночной трансформации клопидогрела, обусловливает нередко встречающуюся вариабельность фармакологического ответа на препарат. Нужно учитывать, что частота распространения аллелей данного гена заметно различается у представителей разных рас и этнических групп. Цель. Изучить распространенность аллелей гена CYP2C19, ассоциированных с риском резистентности к клопидогрелу и развитием тромботических осложнений на фоне стандартной терапии среди пациентов (русские и якуты), получающих терапию клопидогрелом по поводу острого коронарного синдрома (ОКС). Материал и методы. Обследованы 411 пациентов – 143 (34,8%) русских и 268 (65,2%) якутов – с диагнозом ОКС, получающих терапию клопидогрелом. Частота полиморфизмов определена с использованием аллельспецифичной полимеразной цепной реакции в реальном времени. Результаты. В обеих этнических группах соблюдалось равновесие Харди–Вайнберга по распределению аллелей и генотипов в популяции, что свидетельствует о соответствии частоты распределения аллелей и генотипов в изучаемых группах генеральной совокупности. Частота аллельного варианта CYP2C19*2 у якутов составила 17,53%, варианта CYP2C19*3 – 3,92%, у русских – соответственно 8,39 и 3,5%, т.е. частота СYP2C19*2 в группе якутов оказалась выше, чем у пациентов русской этнической группы (17,53 и 8,39%; p=0,0004). Статистически значимой разницы в частоте носительства аллеля CYP2C19*3 не обнаружено (соответственно 3,92 и 3,5%; p=0,76). Заключение. Среди якутов отмечено больше «медленных» метаболизаторов (соответственно 17,53 и 8,39%; p=0,0004), что подтверждает необходимость учета расово-этнических особенностей при назначении клопидогрела.
Ключевые слова: 
CYP2C19*2, CYP2C19*3, острый коронарный синдром, клопидогрел, фармакогенетика

Список литературы: 
  1. World Health Organization. (2016). WORLD HEALTH STATISTICS – MONITORING HEALTH FOR THE SDGs. World Health Organization, 1.121. https://doi.org/10.1017/CBO9781107415324.004
  2. Federal Service of State Statistics (Rosstat) as of 2014. http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/population/demography/#
  3. Roffi M., Valgimigli M., Bax J.J., Borger M. A., Gencer B., Germany U. L., … Vrints C. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. European Heart J. 2015; 32: 2999–3054. https://doi.org/10.1093/eurheartj/ehv320
  4. Yusuf S., Zhao F., Mehta S.R., Chrolavicius S., Tognoni G., Fox K.K. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N. Engl. J. Med. 2001; 345: 494–502.
  5. Steg P.G., James S.K., Atar D., Badano L.P., Lundqvist C.B., Borger M.A., … Wallentin L. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. European Heart J. 2012; 33 (20): 2569–619. https://doi.org/10.1093/eurheartj/ehs215
  6. Gosling R., Yazdani M., Parviz Y., Hall I.R., Grech E.D., Gunn J.P., … Iqbal J. (2017). Comparison of P2Y12 inhibitors for mortality and stent thrombosis in patients with acute coronary syndromes: Single center study of 10 793 consecutive «real-world» patients. Platelets, 1–7. https://doi.org/10.1080/09537104.2017.1280601
  7. Jneid H., Anderson J.L. et al. 2012 Writing Committee Members, 2012 ACCF/AHA focused update of the Guideline for the Management of Patients With Unstable Angina/Non–ST-Elevation Myocardial Infarction (updating the 2007 guideline and replacing the 2011 focused update): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Developed in Collaboration With the American College of Emergency Physicians, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 2012; 126: 875–910.
  8. Mega J.L., Close S.L., Wiviott S.D., et al. Cytochrome P-450 polymorphisms and response to clopidogrel. N. Engl. J. Med. 2009; 360 (4): 354–62.
  9. Giusti B., Gori A.M., Marcucci R., et al. Relation of cytochrome P4502C19 loss-of-function polymorphism to occurrence of drug-eluting coronary stent thrombosis. Am. J. Cardiol. 2009; 103 (6): 806–11.
  10. Bonello L., Armero S., Ait Mokhtar O. et al. Clopidogrel loading dose adjustment according to platelet reactivity monitoring in patients carrying the 2C19*2 loss of function polymorphism. J. Am. Coll. Cardiol. 2010; 56 (20): 1630–6.
  11. Collet J.P., Hulot J.S., Pena A. et al. Cytochrome P4502C19 polymorphism in young patients treated with clopidogrel after myocardial infarction: a cohort study. Lancet. 2009; 373: 309–17.
  12. Geisler T., Schaeffeler E., Dippon J., et al. CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics. 2008; 9 (9): 1251–9.
  13. Sim S.C., Risinger C., Dahl M.L. et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther. 2006; 79 (1): 103–13.
  14. All-Russian population census 2010. The national composition of the population of Russia 2010 http://www.gks.ru/free_doc/new_site/population/demo/per-itog/tab5.xls)
  15. The official website of the All-Russia Population Census of 2010. Information materials on the final results of the 2010 All-Russia Population Census. http://www.gks.ru/free_doc/new_site/perepis2010/perepis_itogi1612.htm).
  16. Crubezy E., Amory S., Keyser C., Bouakaze C., Bodner M., Gibert M., … Ludes B. (2010). Human evolution in Siberia: from frozen bodies to ancient DNA. BMC Evol Biol, 10, 25. https://doi.org/10.1186/1471-2148-10-25
  17. Gaikovitch E.A., Cascorbi I., Mrozikiewicz P.M., Brockmöller J., Frötschl R., Köpke K., … Roots I. Polymorphisms of drug-metabolizing enzymes CYP2C9, CYP2C19, CYP2D6, CYP1A1, NAT2 and of P-glycoprotein in a Russian population. Eur. J. of Clin. Pharmacol. 2003; 59 (4): 303–12. https://doi.org/10.1007/s00228-003-0606-2
  18. Mirzaev K.B., Sychev D.A., Karkischenko V.N. CYP2C19*2, CYP2C19*3, CYP2C19*17 Allele and Genotype Frequencies in Clopidogrel-Treated Patients with Coronary Heart Disease from the Russian Population. Biomedicine. 2013; 1: 117–28 (in Russian).
  19. Makeeva O., Stepanov V., Puzyrev V., Goldstein D.B., & Grossman I. Global pharmacogenetics: genetic substructure of Eurasian populations and its effect on variants of drug-metabolizing enzymes. Pharmacogenomics. 2008; 9 (7): 847–68. https://doi.org/10.2217/14622416.9.7.847
  20. Vasilyev F.F., Danilova D.A., Kaimonov V.S., Chertovskih Y.V., Maksimova N.R. Frequency distribution of polymorphisms of CYP2C19, CYP2C9, VKORC1 and SLCO1B1 genes in the Yakut population. Research in Pharmaceutical Sciences. 2016; 11 (3): 259–64.
  21. Goar Arutyunyan D.S. (2013). Cytochrome 2C19 Enzyme Polymorphism Frequency in Different Indigenous Ethnic Groups in Russian Federation: A Systematic Review. J. of Pharmacogenomics & Pharmacoproteomics. 2013; 5 (3): 3–6. https://doi.org/10.4172/2153-0645.1000136
  22. Kantemirova B.I., Timofeeva N.V., Sychev D.A. A comparative study of cyp2c19 gene polymorphism in children living in the Astrakhanian region. Astrahanskij zhurnal. 2011; 4: 85–9 (in Russian).
  23. Khalikova A.R., Arkhipova A.A., Ahmetov I.I. The study of cytochrome P-450 CYP2C19 gene polymorphisms in population of Tatars living in Republic of Tatarstan. Prakticheskaja Medicina. 2012; 3 (58): 53–5 (in Russian).
  24. Romodanovsky D.P., Khapaev B.A., Ignatievet V. Frequencies the «slow» allele variants of the genes coding isoenzymes of cytochrome Р450 CYP2D6, CYP2C19, CYP2C9 in Karachaevs and Circassians. Biomedicina. 2010; 2: 33–7 (in Russian).
  25. Mirzayev K.B., Mammayev S.N., Gafurov D.M., Kazakov R.E., Sychev D.A. Prevalence of CYP2C19*2 (cG681A,rs4244285) polymorphic markers in Dagestan mountaineers population, its role for pharmacotherapy individualization. 2014; 2: 57–62.
  26. Brackbill M.L., Kidd R.S., Abdoo A.D., Warner J.G. & Harralson A.F. Frequency of CYP3A4, CYP3A5, CYP2C9, and CYP2C19 variant alleles in patients receiving clopidogrel that experience repeat acute coronary syndrome. Heart and Vessels. 2009; 24 (2): 73–8. https://doi.org/10.1007/s00380-008-1085-2
  27. Teixeira R., Monteiro P., Marques G., Pego J., Lourenço M., Tavares C., … Providência L.A. CYP2C19*2 and prognosis after an acute coronary syndrome: Insights from a Portuguese center. Revista Portuguesa de Cardiologia. 2012; 31 (4): 265–73. https://doi.org/10.1016/j.repc.2012.02.001
  28. Bathum L., Hansen T.S., Horder M., Brosen K. A dual label oligonucleotide ligation assay for detection of the CYP2C19*1, CYP2C19*2, and CYP2C19*3 alleles involving time-resolved fluorometry. Ther Drug Monit. 1998; 20 (1): 1–6.
  29. Aynacioglu A.S., Sachse C., Bozkurt A., Kortunay S., Nacak M., Schroder T., Kayaalp S.O., Roots I., Brockmoller J. Low frequency of defective alleles of cytochrome P450 enzymes 2C19 and 2D6 in the Turkish population. Clin Pharmacol Ther. 1999; 66 (2): 185–92.
  30. Scordo M.G., Caputi A.P., D’Arrigo C. et al. Allele and genotype frequencies of CYP2C9, CYP2C19 and CYP2D6 in an Italian population. Pharmacol Res. 2004; 50 (2): 195–200.
  31. Wang X. qin, Shen C. lin, Wang B. ning, Huang X. hui, Hu Z. le, & Li J. Genetic polymorphisms of CYP2C19*2 and ABCB1 C3435T affect the pharmacokinetic and pharmacodynamic responses to clopidogrel in 401 patients with acute coronary syndrome. Gene. 2015; 558 (2): 200–7. https://doi.org/10.1016/j.gene.2014.12.051
  32. Roh H.K., Dahl M.L., Tybring G. et al. CYP2C19 genotype and phenotype determined by omeprazole in a Korean population. Pharmacogenetics. 1996; 6 (6): 547–51.
  33. Takakubo F., Kuwano A., Kondo I. Evidence that poor metabolizers of (S)-mephenytoin could be identified by haplotypes of CYP2C19 in Japanese. Pharmacogenetics. 1996; 6 (3): 265–7.
  34. Tantray J.A., Reddy K.P., Jamil K. & Kumar Y.S. (2016). Pharmacodynamic and cytogenetic evaluation in CYP2C19*2 and CYP2C19*3 allelomorphism in South Indian population with clopidogrel therapy. International J. of Cardiology. https://doi.org/10.1016/j.ijcard.2016.11.217
  35. Scott S. a, Sangkuhl K., Stein C.M., Hulot J.-S., Mega J.L., Roden D.M., Shuldiner a R. Clinical pharmacogenetics implementation consortium guidelines for CYP2C19 genotype and clopidogrel therapy: 2013 update. Clinical Pharmacology and Therapeutics. 2013; 94 (3): 317–23. https://doi.org/10.1038/clpt.2013.105