МОДЕЛИРОВАНИЕ ПРОЦЕССА РЕГЕНЕРАЦИИ СПИННОГО МОЗГА В СИСТЕМЕ IN VITRO

DOI: https://doi.org/10.29296/24999490-2018-06-01

М.М. Михайлова(1), кандидат физико-математических наук, М.А. Пальцев(2, 3), академик РАН, профессор, А.А. Пантелеев(1), кандидат биологических наук 1-НИЦ «Курчатовский институт», Российская Федерация, 123182, Москва, пл. академика Курчатова, д. 1; 2-ФГБУ «Институт биохимической физики им. Н.М. Эмануэля» РАН, Российская Федерация, 119334, Москва, ул. Косыгина, д. 4; 3-ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова», биологический факультет, Российская Федерация, 119991, Москва, Ленинские горы, д. 1, стр. 12 E-mail: a.a.pantel@gmail.com

Среди повреждений центральной нервной системы особое место занимают травмы спинного мозга, до сих пор практически неподдающиеся лечению и вызывающие тяжелейшие последствия. Некроз ткани в очаге поражения, вызванный механическим воздействием, через несколько дней сменяется хронической стадией повреждения спинного мозга, во время которой начинают гибнуть клетки, которые не были повреждены непосредственно в результате травмы. При этом отсутствие у нейронов спинного мозга способности восстанавливать аксоны после повреждения значительно снижает вероятность положительного прогноза. Действие внешних ингибиторов роста аксонов (компоненты миелина и хондроитинсульфат протеогликаны, синтезируемые реактивными астроцитами в области глиального рубца) и неспособность нейронов запускать в ответ на повреждение целый каскад генов, участвующих в регенерации, делает восстановление аксонов в спинном мозге практически невозможным. Большинство работ, посвященных проблеме изучения регенерации аксонов после травмы спинного мозга, выполнены на лабораторных животных (in vivo). Однако подобные эксперименты имеют множество ограничений, в том числе необходимость сложного хирургического вмешательства, длительный и тщательный послеоперационный уход за животными, а главное – низкую воспроизводимость результатов. Первичная культура клеток спинного мозга и его органотипическая культура (in vitro и ex vivo модели) представляют собой перспективную альтернативу экспериментам на животных. В настоящей работе рассматриваются подходы к получению этих моделей и методы их использования для изучения механизмов регенерации нейронов спинного мозга и поиска методов стимуляции этого процесса.

Список литературы: 
  1. Oyinbo C.A. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars). 2011; 71 (2): 281–99.
  2. Yiu G., He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci. 2006; 7 (8): 617–27. https://doi.org/10.1038/nrn1956
  3. Dray C., Rougon G., Debarbieux F. Quantitative analysis by in vivo imaging of the dynamics of vascular and axonal networks in injured mouse spinal cord. Proc Natl Acad Sci USA. 2009; 106 (23): 9459–64. https://doi.org/10.1073/pnas.0900222106.
  4. Akbik F., Cafferty W.B., Strittmatter S.M. Myelin associated inhibitors: a link between injury-induced and experience-dependent plasticity. Exp Neurol. 2012; 235 (1): 43–52. https://doi.org/10.1016/j.expneurol.2011.06.006.
  5. Kaneko S., Iwanami A., Nakamura M., Kishino A., Kikuchi K., Shibata S., Okano H.J., Ikegami T., Moriya A., Konishi O., Nakayama C., Kumagai K., Kimura T., Sato Y., Goshima Y., Taniguchi M., Ito M., He Z., Toyama Y., Okano H. A selective Sema3A inhibitor enhances regenerative responses and functional recovery of the injured spinal cord. Nat Med. 2006; 12 (12): 1380–9.
  6. Slaets H., Nelissen S., Janssens K., Vidal P.M., Lemmens E., Stinissen P., Hendrix S., Hellings N. Oncostatin Meduces lesion size and promotes functional recovery and neurite outgrowth after spinal cord injury. Mol. Neurobiol. 2014; 50 (3): 1142–51. https://doi.org/10.1007/s12035-014-8795-5.
  7. Graber D.J., Harris B.T. Purification and culture of spinal motor neurons from rat embryos. Cold Spring Harb Protoc. 2013; 2013 (4): 319–26. https://doi.org/10.1101/pdb.prot074161.
  8. Zhang H., Robinson N., Gómez-Curet I., Wang W., Harrington M. Neuronal and network activity in networks of cultured spinal motor neurons. Neuroreport. 2009; 20 (9): 849–54. https://doi.org/10.1097/WNR.0b013e32832be525
  9. Langlois S.D., Morin S., Yam P.T., Charron F. Dissection and Culture of Commissural Neurons from Embryonic Spinal Cord. JoVE. 2010; 39. https://doi.org/10.3791/1773
  10. Chen Z., Lee H., Henle S.J., Cheever T.R., Ekker S.C., Henley J.R. Primary neuron culture for nerve growth and axon guidance studies in zebrafish (Danio rerio) PLoS One. 2013; 8 (3): e57539. https://doi.org/10.1371/journal.pone.0057539.
  11. Kuhn T.B. Oxygen radicals elicit paralysis and collapse of spinal cord neuron growth cones upon exposure to proinflammatory cytokines. Biomed Res Int. 2014; 191767. https://doi.org/10.1155/2014/191767.
  12. Pal A., Singh A., Nag T.C., Chattopadhyay T., Mathur R., Jain S. Iron oxide nanoparticles and magnetic field exposure promote functional recovery by attenuating free radical-induced damage in rats with spinal cord transection. Int J. Nanomedicine. 2013; 8: 2259–72. https://doi.org/10.2147/IJN.S44238
  13. Leach M.K., Feng Z.Q., Gertz C.C., Tuck S.J., Regan T.M., Naim Y., Vincent A.M., Corey J.M. The culture of primary motor and sensory neurons in defined media on electrospun poly-L-lactide nanofiber scaffolds. J. Vis Exp. 2011; (48). https://doi.org/10.3791/2389.
  14. Litsky M.L., Hohl C.M., Lucas J.H., Jurkowitz M.S. Inosine and guanosine preserve neuronal and glial cell viability in mouse spinal cord cultures during chemical hypoxia. Brain Res. 1999; 821 (2): 426–32.
  15. Foley L.S., Fullerton D.A., Bennett D.T., Freeman K.A., Mares J., Bell M.T., Cleveland J.C.Jr., Weyant M.J., Meng X., Puskas F., Reece T.B. Spinal Cord Ischemia-Reperfusion Injury Induces Erythropoietin Receptor Expression. Ann Thorac Surg. 2015; 100 (1): 41–6. https://doi.org/0.1016/j.athoracsur.2015.01.027.
  16. Wang X., Ma J., Fu Q., Zhu L., Zhang Z., Zhang F., Lu N., Chen A. Role of hypoxia-inducible factor-1α in autophagic cell death in microglial cells induced by hypoxia. Mol Med Rep. 2017; 15(4): 2097–2105.
  17. Huebner EA, Strittmatter SM Axon Regeneration in the Peripheral and Central Nervous Systems. Results Probl Cell Differ. 2009; 48: 339–51. https://doi.org/10.1007/400_2009_19.
  18. Thomson C.E., McCulloch M., Sorenson A., Barnett S.C., Seed B.V., Griffiths I.R. and McLaughlin M. Myelinated, synapsing cultures of murine spinal cord – validation as an in vitro model of the central nervous system. Eur. J. of Neuroscience. 2008; 28: 1518–35.
  19. Bonnici B. and Kapfhammer J.P. Spontaneous regeneration of intrinsic spinal cord axons in a novel spinal cord slice culture model. Eur. J. of Neuroscience. 2008; 27: 2483–92.
  20. Gerardo-Nava J., Hodde D., Katona I., Bozkurt A., Grehl T., Steinbusch H.W.M., Weis J., Brook G.A. Spinal cord organotypic slice cultures for the study of regenerating motor axon interactions with 3D scaffolds. Biomaterials xxx. 2014; 1–9.
  21. Weightman A.P., Pickard M.R., Yang Y., Chari D.M. An in vitro spinal cord injury model to screen neuroregenerative materials. Biomaterials. 2014; 35: 3756–65.
  22. Schizas N., Rojas R., Kootala S., Andersson B., Pettersson J., Hilborn J., Hailer N.P. J. Hyaluronic acid-based hydrogel enhances neuronal survival in spinal cord slice cultures from postnatal mice. Biomater Appl. 2014; 28 (6): 825–36. https://doi.org/10.1177/0885328213483636.
  23. Khaing Z.Z., Schmidt C.E. Advances in natural biomaterials for nerve tissue repair. Neurosci Lett. 2012; 519 (2): 103–14. https://doi.org/10.1016/j.neulet.2012.02.027.
  24. Lee Y.S., Baratta J., Yu J., Lin V.W., Robertson R.T. AFGF promotes axonal growth in rat spinal cord organotypic slice co-cultures. J. Neurotrauma. 2002; 19 (3): 357–67.
  25. Vyas A., Li Z., Aspalter M., Feiner J., Hoke A., Zhou C., O’Daly A., Abdullah M., Rohde C., Brushart T.M. An in vitro model of adult mammalian nerve repair. Exp Neurol. 2010; 223 (1): 112–8. https://doi.org/10.1016/j.expneurol.2009.05.022.
  26. Salewski R.P., Mitchell R.A., Li L., Shen C., Milekovskaia M., Nagy A., Fehlings M.G. Transplantation of Induced Pluripotent Stem Cell-Derived Neural Stem Cells Mediate Functional Recovery Following Thoracic Spinal Cord Injury Through Remyelination of Axons. Stem Cells Transl Med. 2015; 4 (7): 743–54. https://doi.org/10.5966/sctm.2014-0236.
  27. Kim H.M., Lee H.J., Lee M.Y., Kim S.U., Kim B.G. Organotypic spinal cord slice culture to study neural stem/progenitor cell microenvironment in the injured spinal cord. Exp Neurobiol. 2010; 19 (2): 106–13. https://doi.org/10.5607/en.2010.19.2.106.
  28. Pandamooz S., Salehi M.S., Nabiuni M., Dargahi L., Pourghasem M. Evaluation of Epidermal Neural Crest Stem Cells in Organotypic Spinal Cord Slice Culture Platform. Folia Biol (Praha). 2016; 62 (6): 263–7.
  29. Liu X., Chu T.H., Su H., Guo A., Wu W. Neural progenitor cell apoptosis and differentiation were affected by activated microglia in spinal cord slice culture. Neurol Sci. 2014; 35 (3): 415–9. https://doi.org/10.1007/s10072-013-1532-4.
  30. Kubinová S., Syková E. Nanotechnology for treatment of stroke and spinal cord injury. Nanomedicine (Lond). 2010; 5 (1): 99–108. https://doi.org/10.2217/nnm.09.93.
  31. Huang Z., Pei N., Wang Y., Xie X., Sun A., Shen L., Zhang S., Liu X., Zou Y., Qian J., Ge J. Biomaterials. Deep magnetic capture of magnetically loaded cells for spatially targeted therapeutics. 2010; 31 (8): 2130–40. https://doi.org/10.1016/j.biomaterials.2009.11.062.
  32. Pinkernelle J., Calatayud P., Goya G.F., Fansa H., Keilhoff G. Magnetic nanoparticles in primary neural cell cultures are mainly taken up by microglia. BMC Neurosci. 2012; 13: 32. https://doi.org/10.1186/1471-2202-13-32.
  33. Vangeison G., Carr D., Federoff H.J., Rempe D.A. J Neurosci. The good, the bad, and the cell type-specific roles of hypoxia inducible factor-1 alpha in neurons and astrocytes. 2008; 28 (8): 1988–93. https://doi.org/10.1523/JNEUROSCI.5323-07.2008.
  34. An S.S., Pennant W.A., Ha Y., Oh J.S., Kim H.J., Gwak S.J., Yoon D.H., Kim K.N. Hypoxia-induced expression of VEGF in the organotypic spinal cord slice culture. Neuroreport. 2011; 22 (2): 55–60. https://doi.org/10.1097/WNR.0b013e3283418b00.