НЕЙРОПЕПТИДЫ КАК РЕГУЛЯТОРЫ ВЗАИМОДЕЙСТВИЯ КЛЕТОЧНЫХ ОСЦИЛЛЯТОРОВ РИТМОВ

DOI: https://doi.org/10.29296/24999490-2019-01-02

М.П. Чернышева, доктор биологических наук, доцент, А.Д. Ноздрачев, академик РАН Санкт-Петербургский государственный университет, Российская Федерация, 199034, Санкт-Петербург, Университетская наб., д. 7/9 E-mail: [email protected]

Пептидергические структуры гипоталамуса составляют основу его уникальной способности регулировать функции организма во времени, подстраивая метаболизм, энергетический обмен и двигательную активность как источники собственной энергии, к динамике поступления энергии от внешних источников, прежде всего света. Аксоны ретиногипоталамического тракта образуют синапсы на пептидергических нейронах супрахиазматических ядер (СХЯ). Для активности СХЯ как master-сlock циркадианных ритмов необходима регуляция как внутриклеточных осцилляторов, так и сетевой структуры ядра. В обзоре сделан акцент на анализе роли нейропептидов СХЯ в регуляции активности и взаимодействия клеточных осцилляторов мембраны, митохондрий, цитозоля и ядра нейронов. Обсуждается возможность участия нейропептидов в реализации иных функций – регуляции локального кровообращения и метаболизма в СХЯ.
Для цитирования: 
Чернышева М.П., Ноздрачев А.Д. НЕЙРОПЕПТИДЫ КАК РЕГУЛЯТОРЫ ВЗАИМОДЕЙСТВИЯ КЛЕТОЧНЫХ ОСЦИЛЛЯТОРОВ РИТМОВ. Молекулярная медицина, 2019; (1): -https://doi.org/10.29296/24999490-2019-01-02

Список литературы: 
  1. Чернышева М.П., Ноздрачев А.Д. Гипоталамус как гомеостат эндогенного времени. Журн. эвол. биохим. физиол. им И.М. Сеченова. 2017; 53 (1): 3–16. [Chernysheva M. P., Nozdrachev A. D. Hypothalamus as a homeostat of endogenous time. J. Evol. Biochem Physiol. I.M. Sechenov. 2017; 53 (1): 3–16 (in Russian)]
  2. Edgar R., Green E., Zhao Y., van Ooijen G., Olmedo M., Qin X., Xu Y., Pan M., Valekunja U., Feeney K.A., Maywood E., Hastings M.H., Baliga N., Merrow M., Millar A., Johnson C.H., Kyriacou C., O’Neill J.S., Reddy A.B. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 2012; 485 (7399): 459–64.
  3. Feliciano A., Vaz F., Torres V.M., Valentim-Coelho C., Silva R., Prosinecki V., Alexandre B.M., Carvalho A.S., Matthiesen R., Malhotra A., Pinto P., Bárbara C., Penque D. Evening and morning peroxiredoxin-2 redox/oligomeric state changes in obstructive sleep apnea red blood cells: Correlation with polysomnographic and metabolic parameters. Biochim. Biophys. Acta. 2017; 1863: 621–9.
  4. Hoyle N.P., O’Neill J.S. Oxidation-reduction cycles of peroxiredoxin proteins and nontranscriptional aspects of timekeeping. Biochemistry. 2015; 54: 184–93.
  5. Southey B.R., Eun L.J., Zamdborg L., Atkins N.Jr., Mitchell J.W., Li M., Gillette M.U., Kelleher N.L., Sweedler J.V. Comparing label-free quantitative peptidomics approaches to characterize diurnal variation of peptides in the rat suprachiasmatic nucleus. Anal Chem. 2014; 86: 443–52.
  6. Yoshikawa T., Inagaki N.F., Takagi S., Kuroda S., Yamasaki M., Watanabe M., Honma S., Honma K.I. Localization of photoperiod responsive circadian oscillators in the mouse suprachiasmatic nucleus. Sci Rep. 2017; 7: 8210.
  7. Morin L.P. Neuroanatomy of the extended circadian rhythm system. Exp Neurol. 2013; 243: 4–20.
  8. Takahashi J.S. Molecular architecture of the circadian clock in mammals. In: Time for metabolism and hormones. Eds Sassone-Corsi P., Christen Y. Heidelberg:Springer. 2016; 13–24.
  9. Golombek D.A., Bussi I.L., Agostino P.V. Minutes, days and years: мolecular interactions among different scales of biological timing. Philos Trans R Soc Lond B Biol Sci. 2014; 369: 20120465.
  10. Enoki R., OdaY., Mieda M., Ono D., Honma S., Honma K.I. Synchronous circadian voltage rhythms with asynchronous calcium rhythms in the suprachiasmatic nucleus. Proc Natl Acad Sci USA. 2017; 114: 2476–85.
  11. Farajnia S., Meijer J.H., Michel St. Photoperiod modulates fast delayed rectifier potassium currents in the mammalian circadian clock. ASN Neuro. 2016; 8: 1759091416670778.
  12. Чернышева М.П. Временная структура биосистем и биологическое время. СПб.: Super, 2016; 213.
  13. [Chernysheva M.P. Temporal structure of a biosystem and biological time. SPb.: Super, 2016; 213 (in Russian)]
  14. Adelman J.P., Maylie J., Sah P. Small-conductance Ca2+-activated K+ channels: form and function. Annu Rev Physiol. 2012; 74: 245–69.
  15. Guarina L., Vandael D.H., Carabelli V., Carbone E. Low pH boosts burst firing and catecholamine release by blocking TASK-1 and BK channels while preserving Cav1 channels in mouse chromaffin cells. J. Physiol. 2017; 595: 2587–609.
  16. O’Neill J.S., Reddy A.B. The essential role of cAMP/Ca2+ signalling in mammalian circadian timekeeping. Biochem Soc Trans. 2012; 40: 44–50.
  17. Noguchi T., Leise T.L., Kingsbury N.J., Diemer T., Wang L.L., Henson M.A., Welsh D.K. Calcium circadian rhythmicity in the suprachiasmatic nucleus: cell autonomy and network modulation. eNeuro. 2017; 4: ENEURO.0160-17.2017.
  18. Sassone-Corsi P. The epigenetic and metabolic language of the circadian clock. In: Time for metabolism and hormones. Eds. Sassone- Corsi P., Christen Y. Heidelberg :Springer. 2016; 1–20.
  19. Dokudovskaya S., Rout M.P. SEA you later alli-GATOR – a dynamic regulator of the TORC1 stress response pathway. J. Cell. Sci. 2015; 128: 2219–28.
  20. Gau D., Lemberger T., von Gall C., Kretz O., Le Minh N., Gass P., Schmid W., Schibler U., Korf H. W., Schütz G. Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. PloSOne. 2012; 7: e45130.
  21. Шарапов М.Г., Равин В.К., Новоселов В.И. Пероксиредоксины как мультифункциональные энзимы. Мол. Биол. (Москва). 2014; 48: 600–28.
  22. [Sharapov M.G., Ravin V.K., and Novoselov V.I. Peroxiredoxins as multifunctional enzymes. Mol. biol. (Moscow). 2014; 48: 600–28 (in Russian)]
  23. de Keizer P.L., Burgering B.M., Dansen T.B. Forkhead box O as a sensor, mediator, and regulator of redox signaling. Antioxid Redox Signal. 2011; 14: 1093–106.
  24. Putker M., O’Neill J.S. Reciprocal control of the circadian clock and cellular redox state – a critical appraisal. Mol Cell. 2016; 39: 6–9.
  25. Reddy A.B. Redox and metabolic oscillation in the clockwork. In: Time for metabolism and hormones. Eds Sassone-Corsi P., Christen Y. Heidelberg: Springer. 2016; 51–62.
  26. McIntosh B.E., Hogenesch J.B., Bradfield C.A. Mammalian Per-Arnt-Sim proteins in environmental adaptation. Physiol. Rev. 2010; 72: 625–45.
  27. Chi-Castañeda D., Ortega A. Clock genes in glia cells. A rhythmic history. ASN Neuro. 2016; 8: 1759091416670766.
  28. Чернышева М.П., Ноздрачев А.Д. Гормональный фактор пространства и времени внутренней среды организма. СПб.: Наука, 2006; 248.
  29. [Chernysheva M.P., Nozdrachev A.D. Hormonal factor of space and time of organism’s internal environment. SPb.: Nauka, 2006; 248 (in Russian)]
  30. Vaudry D., Falluel-Morel A., Bourgault S., Basille M., Burel D., Wurtz O., Fournier A., Chow B.K.C., Hashimoto H., Galas L., Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharm. Rev. 2009; 61: 283–357.
  31. Loh D.H., Dragich J.M., Kudo T., Schroeder A.M., Nakamura T.J., Waschek J.A., Block G.D., Colwell C.S. Effects of vasoactive intestinal peptide genotype on circadian gene expression in the SCN and peripheral organs. J. Biol. Rhythms. 2011; 26: 200–9.
  32. Tsuji T., Allchorne A.J., Zhang M., Tsuji C., Tobin V.A., Pineda R., Raftogianni A., Stern J.E., Grinevich V., Leng G., Ludwig M. Vasopressin casts light on the suprachiasmatic nucleus. J. Physiol. 2017; 595: 3497–514.
  33. Subhedar N.K., Nakhate K.T., .Upadhya M.A., Kokare D.M. CART in the brain of vertebrates: Circuits, functions and evolution. Peptides. 2014; 54: 108–30.
  34. Lee J.E., Zamdborg L., Southey B.R., Atkins N., Mitchel J.W., Lee M.X, Gillette M.U., Kelleher N.L., Sweedler J.V. Quantitative peptidomics for discovery of circadian-related peptides from the rat suprachiasmatic nucleus. J. Proteome Res. 2013; 12: 585–93.
  35. Fahrenkrug J., Georg B., Hannibal J., Jørgensen H.L. Altered rhythm of adrenal clock genes, StAR and serum corticosterone in VIP receptor 2-deficient mice. J. Mol. Neurosci. 2012; 48: 584–96.
  36. Evans J.A. Collective timekeeping among cells of the master circadian clock. J. Endocrinol. 2016; 230: 27–49.
  37. Butcher G.Q., Lee B., Cheng H.Y.M., Obrietan K. Light stimulates MSK1 activation in the suprachiasmatic nucleus via a PACAP-ERK/MAPkinase-dependent mechanism. J. Neurosci. 2005; 25: 5305–13.
  38. Gamble K.L., Kudo T., Colwell C.S., McMahon D.G. Gastrin-releasing peptide modulates fast delayed rectifier potassium current in Per1-expressing SCN neurons. J. Biol. Rhythms. 2011; 26: 99–106.
  39. Hablitz L.M., Molzof H.E., Abrahamsson K.E., Cooper J.M., Prosser R.A., Gamble K.L. GIRK Channels Mediate the Nonphotic Effects of Exogenous Melatonin. J. Neurosci. 2015; 35: 14957–65.
  40. Maywood E.S., Chesham J.E., O’Brien J.A., Hastings M.H. A diversity of paracrine signals sustains molecular circadian cycling in suprachiasmatic nucleus circuits. Proc Natl Acad Sci USA. 2011; 108: 14306–11.
  41. Ukena K., Osugi T., Leprince J., Vaudry H., Tsutsui K. Molecular evolution of GPCRs: 26Rfa/GPR103. J. Mol. Endocrinol. 2014; 52: 119–31.
  42. Vu J.P., Goyal D., Luong L., Oh S., Sandhu R., Norris J., Parsons W., Pisegna J.R., Germano P.M. PACAP intraperitoneal treatment suppresses appetite and food intake via PAC1 receptor in mice by inhibiting ghrelin and increasing GLP-1 and leptin. Am J Physiol Gastrointest Liver Physiol. 2015; 309: 816–25.
  43. Fukuhara C., Brewer J.M., Dirden J.C., Bittman E.L., Tosini G., Harrington M. E. Neuropeptide Y rapidly reduces Period 1 and Period 2 mRNA levels in the hamster suprachiasmatic nucleus. Neurosci Lett. 2001; 314: 119–22.
  44. Neitz A., Mergia E., Imbrosci B., Petrasch-Parwez E., Eysel U.T., Koesling D., Mittmann T. Postsynaptic NO/cGMP increases NMDA receptor currents via hyperpolarization-activated cyclic nucleotide-gated channels in the hippocampus. Cereb Cortex. 2014; 24: 1923–36.
  45. Hummer D.L., Ehlen J.C., Larkin T.E., McNeill J.K., Pamplin J.R., Walker C. A., Walker P.V., Dhanraj D.R., Albers H.E. Sustained activation of GABAA receptors in the suprachiasmatic nucleus mediates light-induced phase delays of the circadian clock: a novel function of ionotropic receptors. Eur. J. Neurosci. 2015; 42: 1830–8.
  46. Sumova A., Bendova Z., Sladek M., El-Hennamy R., Laurinova K., Jindrakova Z., Illnerova H. Setting the biological time in central and peripheral clocks during ontogenesis. The FEBS letters, 2006; 580: 2836–42.
  47. Burton K.J., Li X., Li B., Cheng M.Y., Urbanski H.F., Zhou Q.Y. Expression of prokineticin 2 and its receptor in the macaque monkey brain. Chronobiol Int. 2016; 33: 191–9.
  48. Li J.D., Burton K.J., Zhang C., Hu S.B., Zhou Q.Y. Vasopressin receptor V1a regulates circadian rhythms of locomotor activity and expression of clock-controlled genes in the suprachiasmatic nuclei. Am. J. Physiol. Regul. Integr omp. Physiol. 2009; 296: 824–30.
  49. Mieda M., Ono D., Hasegawa E., Okamoto H., Honma K., Honma S., Sakurai T. Cellular clocks in AVP neurons of the SCN are critical for interneuronal coupling regulating circadian behavior rhythm. Neuron. 2015; 85: 1103–16.
  50. Vida B., Hrabovszky E., Kalamatianos T., Coen C.W., Liposits Z., Kalló I. Oestrogen receptor α and β immunoreactive cells in the SCN of mice: distribution, sex differences and regulation by gonadal hormones. J. Neuroendocrinol. 2008; 20: 1270–6.
  51. Van der Zee E.A, Roman V., Ten Brinke O., Meerlo P. TGF alfa and AVP in the mouse SCN anatomical relationship and daily profiles. Brain Res. 2005; 1054: 159–66.
  52. Ikegami K., Yoshimura N. Molecular mechanism regulating seasonality. In: Biological timekeeping: clocks, rhythms and behavior. Ed. Kumar V., Springer (India). 2017; 589–606.
  53. Kalsbeek A., van der Spek R., Lei J., Endert E., Buijs R.M., Fliers E. Circadian rhythms in the hypothalamo–pituitary–adrenal (HPA) axis. Mol Cell Endocrinol. 2012; 349: 20–9.