INFLAMAGING – МОЛЕКУЛЯРНО-КЛЕТОЧНЫЕ МЕХАНИЗМЫ СТАРЕНИЯ ЖЕНСКОЙ РЕПРОДУКТИВНОЙ СИСТЕМЫ

DOI: https://doi.org/10.29296/24999490-2019-03-02

В.Р. Родичкина(1), И.М. Кветной(2, 3), доктор медицинских наук, профессор, В.О. Полякова(2, 3, 4), доктор биологических наук, профессор РАН 1-АННО ВО НИЦ «Санкт-Петербургский институт биорегуляции и геронтологии» СЗО РАН, Российская Федерация, 197110, Санкт-Петербург, пр. Динамо, д. 3; 2-ФГБНУ «НИИ акушерства, гинекологии и репродуктологии им. Д.О. Отта», Российская Федерация, 199034, Санкт-Петербург, Менделеевская линия, д. 3; 3-ФГБОУ ВО «Санкт-Петербургский государственный университет», Российская Федерация, 199034, Санкт-Петербург, Университетская набережная, д. 7–9; 4-Санкт-Петербургский медико-социальный институт, Российская Федерация, 195271, Санкт-Петербург, Кондратьевский пр., д. 72А E-mail: [email protected]

Старение – сложный биологический процесс, основным аспектом которого является накопление соматических изменений в организме в течение жизни. Поздний репродуктивный возраст ассоциирован с бесплодием и возможными осложнениями наступления и течения беременности. Старение на клеточном и органном уровнях негативно влияет на репродуктивную функцию. Доказано, что иммунные клетки играют ключевую роль в функционировании репродуктивной системы, наступлении и течении беременности. Стареющие клетки экспрессируют провоспалительные цитокины, факторы роста и матриксные металлопротеиназы, которые в совокупности называются ассоциированным со старением секреторным фенотипом (SASP). Такие клетки жизнеспособны in vitro – в отличие от апоптотических клеток, которые подвергаются запрограммированной клеточной гибели. В 2014 г. C. Franceschi предложен новый термин «inflamaging» (инфламэйджинг), который характеризует хронический, слабовыраженный воспалительный процесс в разных органах при их старческой инволюции, протекающий бессимптомно и являющийся деструктивным для организма. По основным признакам инфламэйджинг значительно отличается от острого воспаления. Наиболее изученными маркерами иммунологического старения являются NF-κB, интерлейкины (ИЛ) 1, 6, 18, фактор некроза опухоли-α (TNFα). В настоящем обзоре рассматривается влияние клеточного, «воспалительного» и иммунного старения на репродуктивную функцию женщин.
Ключевые слова: 
старение
Для цитирования: 
Родичкина В.Р., Кветной И.М., Полякова В.О. INFLAMAGING – МОЛЕКУЛЯРНО-КЛЕТОЧНЫЕ МЕХАНИЗМЫ СТАРЕНИЯ ЖЕНСКОЙ РЕПРОДУКТИВНОЙ СИСТЕМЫ. Молекулярная медицина, 2019; (3): -https://doi.org/10.29296/24999490-2019-03-02

Список литературы: 
  1. Franceschi C., Campisi J. Chronic inflammation (Inflammaging) and its potentional contribution to age-associated Deseases. Biological Science. 2014; 1: 4–9. https://doi.org/10.1093/gerona/glu057
  2. 2. Hayflick L. The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research. 1965; 37: 614–36. https://doi.org/10.1016/ 0014-4827(65)90211-9
  3. 3. Sousa-Victor P., Gutarra S., Garcia-Prat L., Rodriguez-Ubreva J., Ortet L., Ruiz-Bonilla V., Jardi M., Ballestar E., González S., Serrano A.L. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014; 506: 316–21. https://doi.org/10.1038/nature13013
  4. 4. Baker D., Childs B., Durik M., Wijers M., Sieben C., Zhong J., Saltness R., Jeganathan K., Verzosa G., Pezeshki A. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature. 2016; 530: 184–9. https://doi.org/10.1038/nature16932
  5. 5. Wiley C., Velarde M., Lecot P., Liu S., Sarnoski E., Freund A., Shirakawa K., Lim H., Davis S., Ramanathan A. Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metabolism. 2016; 23: 303–14. https://doi.org/10.1016/ j.cmet.2015.11.011
  6. 6. Davalos A., Kawahara M., Malhotra G., Schaum N., Huang J., Ved U., Beausejour C., Coppe J-P., Rodier F. p53-dependent release of Alarmin HMGB1 is a central mediator of senescent phenotypes. J. of Cell Biology. 2013; 201: 613–29. https://doi.org/10.1083/ jcb.201206006
  7. 7. Childs B., Baker D., Kirkland J., Campisi J. van Deursen J. Senescence and apoptosis: dueling or complementary cell fates? EMBO Reports. 2014; 15: 1139–53. https://doi.org/10.15252/embr.201439245
  8. 8. Coppé J., Patil C., Rodier F., Sun Y., Muñoz D., Goldstein J., Nelson P., Desprez P. Campisi J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biology. 2008; 6: 2853–68. https://doi.org/10.1371/journal.pbio.0060301
  9. 9. Xu M., Tchkonia T., Ding H., Ogrodnik M., Lubbers E., Pirtskhalava T., White T., Johnson K., Stout M., Mezera V. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. PNAS. 2015; 112: 6301–10. https://doi.org/10.1073/pnas.1515386112
  10. 10. Baker D., Wijshake T., Tchkonia T., LeBrasseur N., Childs B., van de Sluis B., Kirkland J., van Deursen J. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature. 2011; 479: 232–6. https://doi.org/10.1038/nature10600
  11. 11. Storer M., Mas A., Robert-Moreno A., Pecoraro M., Ortells M., Di Giacomo V., Yosef R., Pilpel N., Krizhanovsky V., Sharpe J. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 2013; 155: 1119–30. https://doi.org/10.1016/j.cell.2013.10.041
  12. 12. Ishii N., Maruyama N. Biology of aging. Dojin Bioscience Series. 2014; 67–83. https://doi.org/10.1186/s40834-017-0050-9
  13. 13. Gruver A., Hudson L., Sempowski G. Immunosenescence of ageing. J. Pathol. 2007; 211: 144–56. https://doi.org/10.1002/path.2104
  14. 14. Carneiro L., Cronin J., Sheldon I. Mechanisms linking bacterial infections of the bovine endometrium to disease and infertility. Reprod Biol. 2016; 16: 1–7. https://doi.org/10.1016/j.repbio.2015.12.002
  15. 15. Cano F., Simon C., Remohi J., Pellicer A. Effect of aging on the female reproductive system: evidence for a role of uterine senescence in the decline in female fecundity. FertilSteril. 1995; 64: 584–9. https://doi.org/10.1186/s40834-017-0050-9.
  16. 16. Carnevale E., Ginther O.J. Relationships of age to uterine function and reproductive efficiency in mares. Theriogenology. 1992; 37: 1101–15. https://doi.org/10.1111/rda.13396
  17. 17. Laser J., Lee P., Wei J.J. Cellular senescence in usual type uterine leiomyoma. FertilSteril. 2010; 93: 2020–6. DOI:10.1016/j.fertnstert.2010.08.012
  18. 18. Tanikawa N., Ohtsu A., Kawahara-Miki R., Kimura K., Matsuyama S., Iwata H., Kuwayama T., Shirasuna K. Age-associated mRNA expression changes in bovine endometrial cells in vitro. Reprod Biol Endocrinol. 2017; 15: 63. https://doi.org/10.1186/s12958-017-0284-z
  19. 19. Pellicer A., Simon C., Remohi J. Effects of aging on the female reproductive system. Hum Reprod. 1995; 10: 77–83. https://doi.org/10.1186/s40834-017-0050-9
  20. 20. Hirota Y., Daikoku T., Tranguch S., Xie H., Bradshaw H., Dey S. Uterinespecific p53 deficiency confers premature uterine senescence and promotes preterm birth in mice. J. Clin. Invest. 2010; 120: 803–15. https://doi.org/10.1172/JCI40051
  21. 21. Ulbrich S., Zitta K., Hiendleder S., Wolf E. In vitro systems for intercepting early embryo-maternal cross-talk in the bovine oviduct. Theriogenology. 2010; 73: 802–16. https://doi.org/10.1016/j.theriogenology.2009.09.036
  22. 22. Halbert S., Tam P., Blandau R. Egg transport in the rabbit oviduct: the roles of cilia and muscle. Science. 1976; 191: 1052–3. https://doi.org/10.1126/science.1251215
  23. 23. Yan J., Akutsu H., Satoh Y. The morphological and functional observation of the gap junction proteins in the oviduct epithelia in young and adult hamsters. Okajimas Folia Anat Jpn. 2011; 88: 57–64. https://doi.org/10.1186/s40834-017-0050-9
  24. 24. Tanaka H., Ohtsu A., Shiratsuki S., Kawahara-Miki R., Iwata H., Kuwayama T., Shirasuna K. Age-dependent changes in inflammation and extracellular matrix in bovine oviduct epithelial cells during the post-ovulatory phase. Mol Reprod Dev. 2016; 83: 815–26. https://doi.org/10.1002/mrd.22693.
  25. 25. Uri-Belapolsky S., Shaish A., Eliyahu E., Grossman H., Levi M., Chuderland D., Ninio-Many L., Hasky N., Shashar D., Almog T., Kandel-Kfir M., Harats D. Interleukin-1 deficiency prolongs ovarian lifespan in mice. Proc Natl Acad Sci USA. 2014; 111: 12492–7. https://doi.org/10.1073/pnas.1323955111.
  26. 26. Clerigues V., Guillen M., Castejon M., Gomar F., Mirabet V., Alcaraz M. Heme oxygenase-1 mediates protective effects on inflammatory, catabolic and senescence responses induced by interleukin-1beta in osteoarthritic osteoblasts. Biochem Pharmacol. 2012; 83: 395–405. https://doi.org/10.1089/ars.2013.5341.
  27. 27. Finch C. The menopause and aging, a comparative perspective. Journal of Steroid Biochemistry and Molecular Biology. 2014; 142: 132–41. https://doi.org/10.1016/j.jsbmb.2013.03.010.
  28. 28. Bromberger J., Schott L., Kravitz H., Sowers M., Avis N., Gold E., Randolph J. Matthews K. Longitudinal change in reproductive hormones and depressive symptoms across the menopausal transition: results from the Study of Women’s Health Across the Nation (SWAN). Archives of General Psychiatry. 2010; 67: 598–607. https://doi.org/10.1001/archgenpsychiatry.2010.55
  29. 29. Pellestor F., Andréo B., Arnal F., Humeau C. Demaille J. Maternal aging and chromosomal abnormalities: new data drawn from in vitro unfertilized human oocytes. Human Genetics. 2003; 112: 195–203. https://doi.org/10.1007/s00439-002-0852-x
  30. 30. Zhang H., Panula S., Petropoulos S., Edsgärd D., Busayavalasa K., Liu L., Li X., Risal S., Shen Y., Shao J. Adult human and mouse ovaries lack DDX4-expressing functional oogonial stem cells. Nature Medicine. 2015; 21: 1116–8. https://doi.org/10.1038/ nm.3775
  31. 31. Dunson D., Baird D., Colombo B. Increased infertility with age in men and women. Obstetrics and Gynecology. 2004; 103: 51–6. https://doi.org/10.1097/01.AOG.0000100153.24061.45
  32. 32. Keefe D., Franco S., Liu L., Trimarchi J., Cao B., Weitzen S., Agarwal S. Blasco M. Telomere length predicts embryo fragmentation after in vitro fertilization in women—toward a telomere theory of reproductive aging in women. American Journal of Obstetrics and Gynecology. 2005; 192: 1256–61. https://doi.org/10.1016/j.ajog.2005.01.036)
  33. 33. Liu L., Franco S., Spyropoulos B., Moens P., Blasco M., Keefe D. Irregular telomeres impair meiotic synapsis and recombination in mice. PNAS. 2004; 101: 6496–501. https://doi.org/10.1073/pnas.0400755101
  34. 34. Grive K., Freiman R. The developmental origins of the mammalian ovarian reserve. Development. 2015; 142: 2554–63. https://doi.org/10.1242/dev.125211
  35. 35. Koshimizu U., Taga T., Watanabe M., Saito M., Shirayoshi Y., Kishimoto T., Nakatsuji N. Functional requirement of gp130-mediated signaling for growth and survival of mouse primordial germ cells in vitro and derivation of embryonic germ (EG) cells. Development.1996; 122: 1235–42.
  36. 36. Butts S., Riethman H., Ratcliffe S., Shaunik A., Coutifaris C. Barnhart K. Correlation of telomere length and telomerase activity with occult ovarian insufficiency. Journal of Clinical Endocrinology and Metabolism. 2009; 94: 4835–43. https://doi.org/10.1210/jc.2008-2269
  37. 37. Cheng E., Chen S., Lee T., Pai Y., Huang L., Huang C., Lee M. Evaluation of telomere length in cumulus cells as a potential biomarker of oocyte and embryo quality. Human Reproduction. 2013; 28: 929–36. https://doi.org/10.1093/humrep/det004
  38. 38. Matsuda F., Inoue N., Manabe N., Ohkura S. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells. Journal of Reproduction and Development. 2012; 58: 44–50. https://doi.org/10.1262/jrd.2011-012
  39. 39. Voutilainen R., Tapanainen J., Chung B., Matteson K., Miller W. Hormonal regulation of P450scc (20,22-desmolase) and P450c17 (17 alpha-hydroxylase/17,20-lyase) in cultured human granulosa cells. Journal of Clinical Endocrinology and Metabolism. 1986. 63: 202–7. https://doi.org/10.1210/jcem-63-1-202
  40. 40. Nelson S., Telfer E., Anderson R. The ageing ovary and uterus: new biological insights. Hum Reprod Update. 2013; 19: 67–83.
  41. 41. Meldrum D., Casper R., Diez-Juan A., Simon C., Domar A., Frydman R. Aging and the environment affect gamete and embryo potential: can weintervene? FertilSteril. 2016; 105: 548–59. https://doi.org/10.1016/j.fertnstert.2016.01.013
  42. 42. Hasler J.F. Forty years of embryo transfer in cattle: a review focusing on thejournalTheriogenology, the growth of the industry in North America, andpersonal reminisces. Theriogenology. 2014; 81: 152–69. https://doi.org/10.1016/j.theriogenology.2013.09.010
  43. 43. Shima T., Sasaki Y., Itoh M., Nakashima A., Ishii N., Sugamura K., Saito S. Regulatory T cells are necessary for implantation and maintenance of early pregnancy but not late pregnancy in allogeneic mice. J. Reprod. Immunol. 2010; 85: 121–9. https://doi.org/10.1016/j.jri.2010.02.006
  44. 44. Brannstrom M., Giesecke L., Moore I., van den Heuvel C., Robertson S. Leukocyte subpopulations in the rat corpus luteum during pregnancy and pseudopregnancy. Biol Reprod. 1994; 50: 1161–7.
  45. 45. Gaytan F., Morales C., Garcia-Pardo L., Reymundo C., Bellido C., Sanchez-Criado J. Macrophages, cell proliferation, and cell death in the human menstrual corpus luteum. Biol. Reprod. 1998; 59: 417–25.
  46. 46. Adashi E. The potential relevance of cytokines to ovarian physiology: the emerging role of resident ovarian cells of the white blood cell series. Endocr Rev. 1990; 11: 454–64. https://doi.org/10.1210/edrv-11-3-454
  47. 47. Goto J., Suganuma N., Takata K., Kitamura K., Asahina T., Kobayashi H., Muranaka Y., Furuhashi M., Kanayama N. Morphological analyses of interleukin-8 effects on rat ovarian follicles at ovulation and luteinization in vivo. Cytokine. 2002; 20: 168–73.
  48. 48. Yasuda M., Shimizu S., Tokuyama S., Watanabe T., Kiuchi Y., Yamamoto T. A novel effect of polymorphonuclear leukocytes in the facilitation of angiogenesis. Life Sci. 2000; 66: 2113–21.
  49. 49. Turner E., Hughes J., Wilson H., Clay M., Mylonas K., Kipari T., Duncan W., Fraser H. Conditional ablation of macrophages disrupts ovarian vasculature. Reproduction. 2011; 141: 821–31. https://doi.org/10.1530/REP-10-0327
  50. 50. Oliveira L., Barreto R., Perecin F., Mansouri-Attia N., Pereira F., Meirelles F. Modulation of maternal immune system during pregnancy in the cow. Reprod Domest Anim. 2012; 47: 384–93.
  51. 51. Ruocco M., Chaouat G., Florez L., Bensussan A., Klatzmann D. Regulatory Tcells in pregnancy: historical perspective, state of the art, and burning questions. Front Immunol. 2014; 5: 389. https://doi.org/10.3389/fimmu.2014.00389
  52. 52. Lee S., Kim J., Lee M., Gilman-Sachs A., Kwak-Kim J. Th17 and regulatory T cells in women with recurrent pregnancy loss. Am. J. Reprod. Immunol. 2012; 67: 311–8. https://doi.org/0.1111/j.1600-0897.2012.01116.x
  53. 53. Jagger A., Shimojima Y., Goronzy J.J., Weyand C.M. Regulatory T cells and the immune aging process: a mini-review. Gerontology. 2014; 60: 130–7. https://doi.org/10.1159/000355303.
  54. 54. Goto M. Inflammaging (inflammation + aging): A driving force for human aging based on an evolutionarily antagonistic pleiotropy theory? Biosci Trends. 2008; 2: 218–30.
  55. 55. Laberge R., Vijg J., Van Steeg H., Dollé M. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Developmental Cell. 2014; 31: 722–33. https://doi.org/10.1016/ j.devcel.2014.11.012
  56. 56. Abrahams V.M. Thirty years of reproductive immunology: an introduction. Am. J. ReprodImmunol. 2010; 63: 411–2. https://doi.org/10.1111/j.1600-0897.2010.00849.x.