Роль аутоантител к белку GAD65 при неврологических заболеваниях

DOI: https://doi.org/10.29296/24999490-2020-01-01

А.Е. Ходова, Д.С. Поляков, кандидат медицинских наук ФГБНУ «Институт экспериментальной медицины», Российская Федеpация, 197376, Санкт-Петербург, ул. Академика Павлова, д. 12 E-mail: [email protected]

Аутоантитела к глутаматдекарбоксилазе (изоформе GAD65) присутствуют в крови больных сахарным диабетом типа 1 (СД1), а также в крови пациентов с относительно редкими неврологическими болезнями, такими как синдром мышечной скованности и мозжечковая атаксия и др. Если рассматривать в отдельности каждую нозологическую единицу, то не у всех больных имеется аутоиммунный компонент, в частности, срыв иммунной толерантности к GAD65. Число неврологических больных, у которых обнаруживаются антитела к GAD65, приближается к 100% только при синдроме мышечной скованности, а при других рассмотренных в обзоре болезнях этот процент значительно ниже или вовсе неизвестен. С другой стороны, далеко не у всех людей с антителами к GAD65 обнаружен СД и(или) синдром мышечной скованности. Интересно, что в настоящее время нет четкого понимания механизма, как именно появление аутоантител к GAD65 связано с развитием клинических проявлений. В обзоре приведены известные литературные данные о наличии аутоантител к белку GAD65 при различных неврологических заболеваниях. Обсуждается возможная роль указанных аутоантител в патологическом процессе. Рассматривается потенциал использования аутоантител к GAD65 в качестве маркера того или иного неврологического заболевания.
Ключевые слова: 
антитела
Для цитирования: 
Ходова А.Е., Поляков Д.С. Роль аутоантител к белку GAD65 при неврологических заболеваниях. Молекулярная медицина, 2020; (1): -https://doi.org/10.29296/24999490-2020-01-01

Список литературы: 
  1. Fenalti G., Buckle A.M. Structural biology of the GAD autoantigen. Autoimmun Rev. 2010; 9 (3): 148–52.
  2. Solimena M., Folli F., Aparisi R., Pozza G., De Camilli P. Autoantibodies to GABA-ergic neurons and pancreatic beta cells in stiff-man syndrome. N. Engl. J. Med. 1990; 322 (22): 1555–60.
  3. Solimena M., Folli F., Denis-Donini S., Comi G.C., Pozza G., De Camilli P., Vicari A.M. Autoantibodies to glutamic acid decarboxylase in a patient with stiff-man syndrome, epilepsy, and type I diabetes mellitus. N. Engl. J. Med. 1988; 318 (16): 1012–20.
  4. Fouka P., Alexopoulos H., Akrivou S., Trohatou O., Politis P.K., Dalakas M.C. GAD65 epitope mapping and search for novel autoantibodies in GAD-associated neurological disorders. J. Neuroimmunol. 2015; 281: 73–7.
  5. Lohmann T., Hawa M., Leslie R.D., Lane R., Picard J., Londei M. Immune reactivity to glutamic acid decarboxylase 65 in stiffman syndrome and type 1 diabetes mellitus. Lancet. 2000; 356 (9223): 31–5.
  6. Dalakas M.C., Fujii M., Li M., Lutfi B., Kyhos J., McElroy B. High-dose intravenous immune globulin for stiff-person syndrome. N. Engl. J. Med. 2001; 345 (26): 1870–6.
  7. Nemni R., Caniatti L.M., Gironi M., Bazzigaluppi E., De Grandis D. Stiff person syndrome does not always occur with maternal passive transfer of GAD65 antibodies. Neurology. 2004; 62 (11): 2101–2.
  8. Dinkel K., Meinck H.M., Jury K.M., Karges W., Richter W. Inhibition of gammaaminobutyric acid synthesis by glutamic acid decarboxylase autoantibodies in stiff-man syndrome. Ann Neurol. 1998; 44 (2): 194–201.
  9. Floeter M.K., Valls-Sole J., Toro C., Jacobowitz D., Hallett M. Physiologic studies of spinal inhibitory circuits in patients with stiff-person syndrome. Neurology. 1998; 51 (1): 85–93.
  10. McKeon A., Martinez-Hernandez E., Lancaster E., Matsumoto J.Y., Harvey R.J., McEvoy K.M., Pittock S.J., Lennon V.A., Dalmau J. Glycine receptor autoimmune spectrum with stiff-man syndrome phenotype. JAMA Neurol. 2013; 70 (1): 44–50.
  11. Moersch F.P., Woltman H.W. Progressive fluctuating muscular rigidity and spasm («stiffman» syndrome); report of a case and some observations in 13 other cases. Proc Staff Meet Mayo Clin. 1956; 31 (15): 421–7.
  12. McKeon A., Robinson M.T., McEvoy K.M., Matsumoto J.Y., Lennon V.A., Ahlskog J.E., Pittock S.J. Stiff-man syndrome and variants: clinical course, treatments, and outcomes. Arch Neurol. 2012; 69 (2): 230–8.
  13. Olafson R.A., Mulder D.W., Howard F.M. «Stiff-man» syndrome: a review of the literature, report of three additional cases and discussion of pathophysiology and therapy. Mayo Clin Proc. 1964; 39: 131–44.
  14. Steffen H., Menger N., Richter W., Nölle B., Krastel H., Stayer C., Kolling G.H., Wässle H., Meinck H.M.. Immune-mediated retinopathy in a patient with stiff-man syndrome. Graefes Arch Clin. Exp. Ophthalmol. 1999; 237 (3): 212–9.
  15. Essalmi L., Meaux-Ruault N., Hafsaoui C., Gil H., Curlier E., Dupond J.L. Stiff person syndrome associated with thymoma. Efficacy of thymectomy. Rev Med. Interne. 2007; 28 (9): 627–30.
  16. Whiteley A.M., Swash M., Urich H. Progressive encephalomyelitis with rigidity. Brain. 1976; 99 (1): 27–42.
  17. Meinck H.M., Ricker K., Conrad B. The stiff-man syndrome: new pathophysiological aspects from abnormal exteroceptive reflexes and the response to clomipramine, clonidine, and tizanidine. J. Neurol Neurosurg Psychiatry. 1984; 47 (3): 280–7.
  18. Hutchinson M., Waters P., McHugh J., Gorman G., O’Riordan S., Connolly S., Hager H., Yu P., Becker C.M., Vincent A. Progressive encephalomyelitis, rigidity, and myoclonus: a novel glycine receptor antibody. Neurology. 2008; 71 (16): 1291–2.
  19. Clerinx K., Breban T., Schrooten M., Leite M.I., Vincent A., Verschakelen J., Tousseyn T., Vandenberghe W. Progressive encephalomyelitis with rigidity and myoclonus: resolution after thymectomy. Neurology. 2011; 76 (3): 303–4.
  20. Damasio J., Leite M.I., Coutinho E., Waters P., Woodhall M., Santos M.A., Carrilho I., Vincent A. Progressive encephalomyelitis with rigidity and myoclonus: the first pediatric case with glycine receptor antibodies. JAMA Neurol. 2013; 70 (4): 498–501.
  21. Carvajal-Gonzalez A., Leite M.I., Waters P., Woodhall M., Coutinho E., Balint B., Lang B., Pettingill P., Carr A., Sheerin U.M., Press R., Lunn M.P., Lim M., Maddison P., Meinck H.M., Vandenberghe W., Vincent A. Glycine receptor antibodies in PERM and related syndromes: characteristics, clinical features and outcomes. Brain. 2014; 137 (Pt 8): 2178–92.
  22. Balint B., Jarius S., Nagel S., Haberkorn U., Probst C., Blocker I.M., Bahtz R., Komorowski L., Stocker W., Kastrup A., Kuthe M., Meinck H.M. Progressive encephalomyelitis with rigidity and myoclonus: a new variant with DPPX antibodies. Neurology. 2014; 82 (17): 1521–8.
  23. 23. Tobin W.O., Lennon V.A., Komorowski L., Probst C., Clardy S.L., Aksamit A.J., Appendino J.P., Lucchinetti C.F., Matsumoto J.Y., Pittock S.J., Sandroni P., Tippmann-Peikert M., Wirrell E.C., McKeon A. DPPX potassium channel antibody: frequency, clinical accompaniments, and outcomes in 20 patients. Neurology. 2014; 83 (20): 1797–803.
  24. 24. Christgau, S., Schierbeck H., Aanstoot H.-J., Aagaard L., Begley K., Kofod H., Hejnaes K., and Baekkeskov S.. Pancreatic beta cells express two autoantigenic forms of glutamic acid decarboxylase, a 65-kDa hydrophilic form and a 64-kDa amphiphilic form which can be both membrane-bound and soluble. J. Biol. Chem. 1991; 266: 21257.
  25. 25. Wong G.H.W., Bartlett P.F., Clark-Lewis I., Battye F., Schrader J.W. Inducible expression of H-2 and Ia antigens on brain cells. Nature (Lond.). 1984; 310: 688.
  26. 26. Baekkeskov S., Kanatsuna T., Klareskog L., Nielsen D.A., Peterson P.A., Rubenstein A.H., Steiner D.F., Lernmark A.. Expression of major histocompatibility antigens on pancreatic islet cells. Proc Natl. Acad. Sci. USA. 1981; 78: 6456.
  27. 27. Oldstone M.B., Nerenberg M., Southern P., Price J., Lewicki H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell. 1991; 65: 319.
  28. 28. Richter W., Shi Y., Baekkeskov S.. Autoreactive epitopes in glutamic acid decarboxylase defined by diabetesassociated human monodonal antibodies. Proc. Natl. Acad. Sci. USA. 1993; 90: 2832.
  29. 29. Hawa M. I., Fava D., Medici F., Deng Y. J., Notkins A. L., De Mattia G., Leslie R. D. Antibodies to IA-2 and GAD65 in type 1 and type 2 diabetes: isotype restriction and polyclonality. Diabetes Care. 2000; 23: 228–33.
  30. 30. Lohmann T., Londei M., Hawa M., Leslie R.D. Humoral and cellular autoimmune responses in stiff person syndrome. Ann. N Y Acad Sci. 2003; 998: 215–22.
  31. 31. Tian J., Olcott A. P., Hanssen L. R., Zekzer D., Middleton B., Kaufman D. L. Infectious Th1 and Th2 autoimmunity in diabetes-prone mice. Immunol. Rev. 1998; 164: 119–27.
  32. 32. Raju R., Foote J., Banga J.P., Hall T.R., Padoa C.J., Dalakas M.C., Ortqvist E., Hampe C.S. Analysis of GAD65 autoantibodies in stiff-person syndrome patients. J. Immunol. 2005; 175 (11): 7755–62.
  33. Levy L. M., Levy-Reis I., Fujii M., Dalaka M. C. Brain gamma-aminobutyric acid changes in stiff-person syndrome. Arch. Neurol. 2005; 62: 970–4.
  34. Manto M.U., Laute M.A., Aguera M., Rogemond V., Pandolfo M., Honnorat J. Effects of anti-glutamic acid decarboxylase antibodies associated with neurological diseases. Ann Neurol. 2007; 61 (6): 544–51.
  35. Alarcon-Segovia D., Ruiz-Arguelles A., Llorente L. Broken dogma: penetration of autoantibodies into living cells. Immunol. Today. 1996; 17: 163–4.
  36. Vicari A. M., Folli F., Pozza G., Comi G. C., Comola M., Canal N., Besana C., Borri A., Tresoldi M., Solimena M. Plasmapheresis in the treatment of stiff-man syndrome. N. Engl. J. Med. 1989; 320: 1499.
  37. Hao W., Davis C., Hirsch I. B., Eng L. J., Daniels T., Walsh D., Lernmark A. Plasmapheresis and immunosuppression in stiff-man syndrome with type 1 diabetes: a 2-year study. J. Neurol. 1999; 246: 731–5.
  38. Ishizawa K., Komori T., Okayama K., Qin X., Kaneko K., Sasaki S., Iwata M. Large motor neuron involvement in Stiff-man syndrome: a qualitative and quantitative study. Acta Neuropathol. 1999; 97: 63–70.
  39. Warich-Kirches M., Von Bossanyi P., Treuheit T., Kirches E., Dietzmann K., Feistner H., and Wittig H. Stiff-man syndrome: possible autoimmune etiology targeted against GABA-ergic cells. Clin. Neuropathol. 1997; 16: 214–9.
  40. Christadoss P., Dauphinee M. J. Immunotherapy for myasthenia gravis: a murine model. J. Immunol. 1986; 136: 2437–40.
  41. Hummel M., Durinovic-Bello I., Bonifacio E., Lampasona V., Endl J., Fessele S., Then B. F., Trenkwalder C., Standl E., Ziegler A. G. Humoral and cellular immune parameters before and during immunosuppressive therapy of a patient with stiff-man syndrome and insulin dependent diabetes mellitus. J. Neurol. Neurosurg. Psychiatry. 1998; 65: 204–8.
  42. Schloot N.C., Batstra M.C., Duinkerken G., De Vries R.R., Dyrberg T., Chaudhuri A., Behan P.O., Roep B.O. GAD65-Reactive T cells in a non-diabetic stiff-man syndrome patient. J. Autoimmun. 1999; 12 (4): 289–96.
  43. Holmøy T., Skorstad G., Røste L.S., Scheie D., Alvik K. Stiff person syndrome associated with lower motor neuron disease and infiltration of cytotoxic T cells in the spinal cord. Clin Neurol Neurosurg. 2009; 111 (8): 708–12.
  44. Hänninen A., Soilu-Hänninen M., Hampe C.S., Deptula A., Geubtner K., Ilonen J., Knip M., Reijonen H. Characterization of CD4+ T cells specific for glutamic acid decarboxylase (GAD65) and proinsulin in a patient with stiff-person syndrome but without type 1 diabetes. Diabetes Metab Res Rev. 2010; 26 (4): 271–9.
  45. Rizzi M., Knoth R., Hampe C.S., Lorenz P., Gougeon M.L., Lemercier B., Venhoff N., Ferrera F., Salzer U., Thiesen H.J., Peter H.H., Walker U.A., Eibel H. Long-lived plasma cells and memory B cells produce pathogenic anti-GAD65 autoantibodies in Stiff Person Syndrome. PLoS One. 2010; 5 (5): e10838.
  46. Hassin-Baer S., Kirson E.D., Shulman L., Buchman A.S., Bin H., Hindiyeh M., Markevich L., Mendelson E. Stiff-person syndrome following West Nile fever. Arch. Neurol. 2004; 61 (6): 938–41.
  47. Saiz A., Blanco Y., Sabater L., Gonzalez F., Bataller L., Casamitjana R., Ramio-Torrenta L., Graus F. Spectrum of neurological syndromes associated with glutamic acid decarboxylase antibodies: diagnostic clues for this association. Brain. 2008; 131 (Pt 10): 2553–63.
  48. Peltola J., Kulmala P., Isojärvi J., Saiz A., Latvala K., Palmio J., Savola K., Knip M., Keränen T., Graus F. Autoantibodies to glutamic acid decarboxylase in patients with therapy-resistant epilepsy. Neurology. 2000; 55 (1): 46–50.
  49. Falip M., Carreno M., Miro J., Saiz A., Villanueva V., Quilez A., Molins A., Barcelo I., Sierra A., Graus F. Prevalence and immunological spectrum of temporal lobe epilepsy with glutamic acid decarboxylase antibodies. Eur. J. Neurol. 2012; 19 (6): 827–33.
  50. Toledano M., Britton J.W., McKeon A., Shin C., Lennon V.A., Quek A.M., So E., Worrell G.A., Cascino G.D., Klein C.J., Lagerlund T.D., Wirrell E.C., Nickels K.C., Pittock S.J. Utility of an immunotherapy trial in evaluating patients with presumed autoimmune epilepsy. Neurology. 2014; 82 (18): 1578–86.
  51. Najjar S., Pearlman D., Zagzag D., Golfinos J., Devinsky O. Glutamic acid decarboxylase autoantibody syndrome presenting as schizophrenia. Neurologist. 2012; 18 (2): 88–91.
  52. Thieben M.J., Lennon V.A., Boeve B.F., Aksamit A.J., Keegan M., Vernino S. Potentially reversible autoimmune limbic encephalitis with neuronal potassium channel antibody. Neurology. 2004; 62 (7): 1177–82.
  53. Sharma A., Dubey D., Sawhney A., Janga K. GAD65 Positive Autoimmune Limbic Encephalitis: A Case Report and Review of Literature. J. Clin. Med. Res. 2012; 4 (6): 424–8.
  54. Dahm L., Ott C., Steiner J., Stepniak B., Teegen B., Saschenbrecker S., Hammer C., Borowski K., Begemann M., Lemke S., Rentzsch K., Probst C., Martens H., Wienands J., Spalletta G., Weissenborn K., Stöcker W., Ehrenreich H. Seroprevalence of autoantibodies against brain antigens in health and disease. Ann Neurol. 2014; 76 (1): 82–94.
  55. Gagnon M.M., Savard M., Mourabit Amari K. Refractory status epilepticus and autoimmune encephalitis with GABAAR and GAD65 antibodies: A case report. Seizure. 2016; 37: 25–7.
  56. Saiz A., Arpa J., Sagasta A., Casamitjana R., Zarranz J.J., Tolosa E., Graus F. Autoantibodies to glutamic acid decarboxylase in three patients with cerebellar ataxia, late-onset insulin-dependent diabetes mellitus, and polyendocrine autoimmunity. Neurology. 1997; 49 (4): 1026–30.
  57. Honnorat J., Saiz A., Giometto B., Vincent A., Brieva L., de Andres C., Maestre J., Fabien N., Vighetto A., Casamitjana R., Thivolet C., Tavolato B., Antoine J., Trouillas P., Graus F. Cerebellar ataxia with anti-glutamic acid decarboxylase antibodies: study of 14 patients. Arch Neurol. 2001; 58 (2): 225–30.
  58. Manto M.U., Hampe C.S., Rogemond V., Honnorat J. Respective implications of glutamate decarboxylase antibodies in stiff person syndrome and cerebellar ataxia. Orphanet J. Rare Dis. 2011; 6: 3.
  59. Kraichely R.E., Farrugia G., Pittock S.J., Castell D.O., Lennon V.A. Neural autoantibody profile of primary achalasia. Dig. Dis. Sci. 2010; 55 (2): 307–11.
  60. Feldblum S., Ackermann R.F., Tobin A.J. Long-term increase of glutamate decarboxylase mRNA in a rat model of temporal lobe epilepsy. Neuron. 1990; 5 (3): 361–71.
  61. Silva A.V., Sanabria E.R., Cavalheiro E.A., Spreafico R. Alterations of the neocortical GABAergic system in the pilocarpine model of temporal lobe epilepsy: neuronal damage and immunocytochemical changes in chronic epileptic rats. Brain. Res. Bull. 2002; 58 (4): 417–21.
  62. Errichiello L., Perruolo G., Pascarella A., Formisano P., Minetti C., Striano S., Zara F., Striano P. Autoantibodies to glutamic acid decarboxylase (GAD) in focal and generalized epilepsy: A study on 233 patients. J. Neuroimmunol. 2009; 211 (1–2): 120–3.
  63. Borusiak P., Bettendorf U., Wiegand G., Bast T., Kluger G., Philippi H., Münstermann D., Bien C.G. Autoantibodies to neuronal antigens in children with focal epilepsy and no prima facie signs of encephalitis. Eur. J. Paediatr Neurol. 2016; 20 (4): 573–9.
  64. Dubey D., Alqallaf A., Hays R., Freeman M., Chen K., Ding K., Agostini M., Vernino S. Neurological Autoantibody Prevalence in Epilepsy of Unknown Etiology. JAMA Neurol. 2017; 74 (4): 397–402.
  65. Malter M.P., Helmstaedter C., Urbach H., Vincent A., Bien C.G. Antibodies to glutamic acid decarboxylase define a form of limbic encephalitis. Ann Neurol. 2010; 67: 470–8.
  66. Bien C.G., Vincent A., Barnett M.H., Becker A.J., Blumcke I., Graus F. Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain. 2012; 135: 1622–38.
  67. Waterhouse N.J., Sutton V.R., Sedelies K.A., Ciccone A., Jenkins M., Turner S.J. Cytotoxic T lymphocyte-induced killing in the absence of granzymes A and B is unique and distinct from both apoptosis and perforin-dependent lysis. J. Cell. Biol. 2006; 173: 133–44.
  68. Meuth S.G., Herrmann A.M., Simon O.J., Siffrin V., Melzer N., Bittner S. Cytotoxic CD8+ T cell-neuron interactions: perforin-dependent electrical silencing precedes but is not causally linked to neuronal cell death. J. Neurosci. 2009; 29: 15397–409.
  69. Hsu C.C., Davis K.M., Jin H., Foos T., Floor E., Chen W. Association of L-glutamic acid decarboxylase to the 70-kDa heat shock protein as a potential anchoring mechanism to synaptic vesicles. J. Biol. Chem. 2000; 275: 20822–8.
  70. Christgau S., Aanstoot H.J., Schierbeck H., Begley K., Tullin S., Hejnaes K. Membrane anchoring of the autoantigen GAD65 to microvesicles in pancreatic beta-cells by palmitoylation in the NH2-terminal domain. J. Cell. Biol. 1992; 118: 309–20.
  71. Gresa-Arribas N., Arino H., Martinez-Hernandez E., Petit-Pedrol M., Sabater L., Saiz A. Antibodies to inhibitory synaptic proteins in neurological syndromes associated with glutamic acid decarboxylase autoimmunity. PLoS One. 2015; 10: e0121364.
  72. Kanter I.C., Huttner H.B., Staykov D., Biermann T., Struffert T., Kerling F. Cyclophosphamide for anti-GAD antibody-positive refractory status epilepticus. Epilepsia. 2008; 49: 914–20.
  73. Serafini G., Howland R.H., Rovedi F., Girardi P., Amore M. The role of ketamine in treatment-resistant depression: a systematic review. Curr Neuropharmacol. 2014; 12: 444–61.
  74. Liimatainen S., Honnorat J., Pittock S.J., McKeon A., Manto M., Radtke J.R. GAD65 autoantibody characteristics in patients with co-occurring type 1 diabetes and epilepsy may help identify underlying epilepsy etiologies. Orphanet J. Rare Dis. 2018; 13 (1): 55.
  75. Chattopadhyay S., Ito M., Cooper J.D., Brooks A.I., Curran T.M., Powers J.M., Pearce D.A. An autoantibody inhibitory to glutamic acid decarboxylase in the neurodegenerative disorder Batten disease. Hum Mol. Genet. 2002; 11 (12): 1421–31.
  76. Ching K.H., Burbelo P.D., Carlson P.J., Drevets W.C., Iadarola M.J. High levels of Anti-GAD65 and Anti-Ro52 autoantibodies in a patient with major depressive disorder showing psychomotor disturbance. J. Neuroimmunol. 2010; 222 (1–2): 87–9.
  77. Rout U.K., Mungan N.K., Dhossche D.M. Presence of GAD65 autoantibodies in the serum of children with autism or ADHD. Eur. Child Adolesc Psychiatry. 2012; 21 (3): 141–7.
  78. Padmos R.C., Bekris L., Knijff E.M., Tiemeier H., Kupka R.W., Cohen D., Nolen W.A., Lernmark A., Drexhage H.A. A high prevalence of organ-specific autoimmunity in patients with bipolar disorder. Biol. Psychiatry. 2004; 56 (7): 476–82.
  79. Sergei V. Raik, Daria N. Poshina, Tatiana A. Lyalina, Dmitry S. Polyakov, Vadim B. Vasilyev, Andreii S. Kritchenkov, Yury A. Skorik. N-[4-(N,N,N-trimethylammonium)benzyl]chitosan chloride: Synthesis, interaction with DNA and evaluation of transfection efficiency. Carbohydrate Polymers. 2018; 181: 693–700.
  80. Polyakov D.S., Grudinina N.A., Bogoslovskaya T.Yu., Sokolov A.V., Mandelshtam M.Yu., Vasilyev V.B. Expression of Recombinant LDLR–EGFP Fusion Protein in HEK-293 Cells as a Promising Tool to Assess the Effect of LDLR Gene Mutations. Cell and Tissue Biology. 2018; 12 (2): 153–9.
  81. Поляков Д.С., Антимонова О.И., Сахабеев Р.Г., Грудинина Н.А., Ходова А.Е., Синицына Е.С., Коржиков-Влах В.А., Тенникова Т.Б., Шавловский М.М. Влияние наночстиц из полимолочной кислоты на иммуногенность связанного с ними белка. Инфекция и иммунитет. 2017; 7 (2): 123–9. [Polyakov D.S., Antimonova O.I., Sahabeev R.G., Grudinina N.A., Hodova A.E., Sinicyna E.S., Korzhikov-Vlah V.A., Tennikova T.B., Shavlovskij M.M. Polylactic acid nanoparticles influence on immunogenicity of the protein bound with them. Infekciya i immunitet. 2017; 7 (2): 123–9 (in Russian)].