ФОРМИРОВАНИЕ И ДЕГРАДАЦИЯ БИОПЛЕНОК: МОЛЕКУЛЯРНО-КЛЕТОЧНЫЕ МЕХАНИЗМЫ

DOI: https://doi.org/10.29296/24999490-2020-05-03

Т.И. Хомякова(1), кандидат медицинских наук, М.Н. Терешин(2), Р.С. Есипов(2), доктор химических наук, А.Д. Магомедова(1), Г.В. Козловская(1), Ю.Е. Козловский(1), кандидат биологических наук, Ю.Н. Хомяков(3), доктор биологических наук, кандидат медицинских наук 1-ФГБНУ «Научно исследовательский институт морфологии человека», Российская Федерация, 117418, Москва, ул. Цюрупы, д. 3; 2-ФГБУН «Институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова» РАН, Российская Федерация, 117437, Москва, ул. Миклухо-Маклая, 16/10, к. 1; 3-ФКУЗ «Противочумный центр» Роспотребнадзора, Российская Федерация, 127490, Москва, ул. Мусоргского, д. 4 E-mail: [email protected]

Сообщества микроорганизмов – это совокупность видов, которые, взаимодействуя друг с другом, занимают одну и ту же нишу, где могут происходить конкурентные либо взаимовыгодные отношения. Биопленки – один из типов микробных сообществ, изучение которых стало актуально в последние 20 лет. Особую проблему представляет повышение антибиотикрезистентности бактерий при их переходе от планктонного образа существования к биопленке. Целью данного обзора является анализ современных представлений о механизмах формирования биопленок, межклеточного взаимодействия при формировании многоклеточных бактериальных агрегатов, первичной адгезии, взаимоотношении бактерий в зрелых биопленках, при дисперсии биопленок и распространении в организме. Приводятся данные о роли сигнальных взаимодействий между микроорганизмами, бактериальных G-белков и микро-РНК в жизненном цикле биопленок. Описаны основные компоненты внеклеточного матрикса и представлены молекулярно-клеточные механизмы их продукции микроорганизмами. Отдельный раздел описывает результаты собственных исследований авторов, посвященных разработке эффективно действующих бактерий-пробиотиков, способных формировать биопленки на стенках слизистой толстой кишки. Предлагается методика скрининга штаммов потенциальных пробиотиков как потенциальных протекторов и ингибиторов формирования биопленки путем конкурентного взаимодействия с патогенами на образующихся местах адгезии.
Ключевые слова: 
пробиотики, внеклеточный матрикс
Для цитирования: 
Хомякова Т.И., Терешин М.Н., Есипов Р.С., Магомедова А.Д., Козловская Г.В., Козловский Ю.Е., Хомяков Ю.Н. ФОРМИРОВАНИЕ И ДЕГРАДАЦИЯ БИОПЛЕНОК: МОЛЕКУЛЯРНО-КЛЕТОЧНЫЕ МЕХАНИЗМЫ. Молекулярная медицина, 2020; (5): -https://doi.org/10.29296/24999490-2020-05-03

Список литературы: 
  1. Das T., Paino D., Manoharan A., Farrell J., Whiteley G., Kriel F.H., Glasbey T., Manos J. Conditions under which glutathione disrupts the biofilms and improves antibiotic efficacy of both ESKAPE and non-ESKAPE species. Front. Microbiol. 2019; 2000 (10): 1–16. https://doi.org/10.3389/fmicb.2019.02000
  2. Jamal M., Ahmad W., Andleeb S., Jalil F., Imran M., Nawaz A. M., Hussain T,, Ali M., Rafiq M., Kamil M.A. Bacterial biofilm and associated infections. J. Chinese Med. Assoc. 2018; 81: 7–11. https://doi.org/10.1016/j.jcma.2017.07.012.
  3. Machado D., Castro J., Palmeira-de-Oliveira A., Martinez-de-Oliveira J., Cerca N. Bacterial vaginosis biofilms: challenges to current therapies and emerging solutions. Front. Microbiol. 2016; 6: 1528. https://doi.org/10.3389/fmicb.2015.01528
  4. Von Rosenvinge E.C., O’May G.A., Macfarlane S., Macfarlane G.T., Shirtliff M.E. Microbial biofilms and gastrointestinal diseases. Pathog Dis. 2013; 67 (1): 25–38. https://doi.org/10.1111/2049-632X.12020.
  5. Vieira Colombo A.P., Magalhães C.B., Hartenbach F.A., Martins do Souto R., Maciel da Silva-Boghossian C. Periodontal-disease-associated biofilm: a reservoir for pathogens of medical importance. Microbial. Pathog. 2016; 94: 27–34. https://doi.org/10.1016/j.micpath.2015.09.009
  6. Delcaru C., Alexandru I., Podgoreanu P., Grosu M., Stavropoulos E., Chifiriuc M. C., Veronica L. Microbial biofilms in urinary tract infections and prostatitis: etiology, pathogenicity, and combating strategies. Pathogens 2016; 5: 65. https://doi.org/10.3390/pathogens5040065
  7. Riquelme S.A., Ahn D., Prince A. Pseudomonas aeruginosa and Klebsiella pneumoniae adaptation to innate immune clearance mechanisms in the lung. J. Innate Immun. 2018; 10 (5–6): 442–54. https://doi.org/10.1159/000487515
  8. Jaggessar A., Shahali H., Mathew A., Yarlagadda P. Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J. Nanobiotechnology. 2017; 15 (1): 64. https://doi.org/10.1186/s12951-017-0306-1
  9. Bernard C., Girardot M., Imbert C. Candida albicans interaction with Gram-positive bacteria within interkingdom biofilms. J. Mycol Med. 2019; 2: 100909. https://doi.org/10.1016/j.mycmed.2019.100909. [Epub ahead of print]
  10. Elias S., Banin E. Multi-species biofilms: living with friendly neighbors. FEMS Microbiol Rev. 2012; 36 (5): 990–1004. https://doi.org/10.1111/j.1574-6976.2012.00325.x. Epub 2012 Feb 2
  11. O’Brien T.J., Welch M. A continuous-flow model for in vitro cultivation of mixed microbial populations associated with cystic fibrosis airway infections. Front Microbiol. 2019; 22 (10): 2713. https://doi.org/10.3389/fmicb.2019.02713. eCollection 2019.
  12. Speranza B., Corbo M.R., Campaniello D., Altieri C. Sinigaglia M., Bevilacqua A. Biofilm formation by potentially probiotic Saccharomyces cerevisiae strains Food Microbiology. 2020; 87 (103393). https://doi.org/10.1016/j.fm.2019.103393
  13. Matilla M.A., Krell T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol Rev. 2018; 42 (1). https://doi.org/10.1093/femsre/fux052.
  14. Kinosita Y., Kikuchi Y., Mikami N. Unforeseen swimming and gliding mode of an insect gut symbiont, Burkholderia sp. RPE64, with wrapping of the flagella around its cell body. ISME J. 2018; 12: 838–48. https://doi.org/10.1038/s41396-017-0010-z
  15. Be’er A., Ariel G. A statistical physics view of swarming bacteria. Mov Ecol. 2019; 7: 9. Published 2019 Mar 15. https://doi.org/10.1186/s40462-019-0153-9
  16. Rabin N., Zheng Y., Opoku-Temeng C., Du Y., Bonsu E., Sintim H.O. Biofilm formation mechanisms and targets for developing antibiofilm agents Future Med Chem. 2015; 7 (10): 1362.
  17. O’Toole G.A., Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 1998; 30 (2): 295–304.
  18. Colin R., Drescher K., Sourjik V. Chemotactic behaviour of Escherichia coli at high cell density Nat Commun. 2019; 10: 5329. https://doi.org/10.1038/s41467-019-13179-1
  19. Woldemeskel S.A., Goley E.D. Shapeshifting to survive: shape determination and regulation in Caulobacter crescentus. Trends Microbiol. 2017; 25 (8): 673–87. https://doi.org/10.1016/j.tim.2017.03.006. Epub 2017 Mar 27.
  20. Pantaléon V., Monot M., Eckert C., Hoys S., Collignona C. Janoira T. Candela T. A. Clostridium difficile forms variable biofilms on abiotic surface Anaerobe, 2018; 53: 34–7. https://doi.org/10.1016/j.anaerobe.2018.05.006
  21. Qin J., Doyle M.T., Tran E.N.H., Morona R.The virulence domain of Shigella Ics A contains a subregion with specific host cell adhesion function. PLoS One. 2020; 7, 15 (1): e0227425. https://doi.org/10.1371/journal.pone.0227425. eCollection 2020
  22. Satchell K.J.F. Structure and function of MARTX toxins and other large repetitive RTX proteins. Annu Rev Microbiol. 2011; 65: 71–90. https://doi.org/10.1146/annurev-micro-090110-102943
  23. Vance TDR, Guo S, Assaie-Ardakany S, Conroy B, Davies PL. Structure and functional analysis of a bacterial adhesin sugar-binding domain PLoS One. 2019; 14 (7): e0220045. Published 2019. https://doi.org/10.1371/journal.pone.0220045
  24. Schleheck D, Barraud N, Klebensberger J, Webb JS, McDougald D, RiceSA, Kjelleberg S. Pseudomonas aeruginosaPAO1 preferentially grows as aggregates in liquid batch cultures and disperses upon starvation. PLoSOne. 2009; 4: e5513. http://dx.doi.org/10.1371/journal.pone.0005513.
  25. Schuett Ch., Doepke H, Grathoff A., Gedde M. Bacterial aggregates in the tentacles of the sea anemone Metridium senile Helgol Mar Res. 2007; 61: 211–6. https://doi.org/10.1007/s10152-007-0069-4123
  26. Melaugh G., Hutchison J., Kragh K.N., Irie Y., Roberts A., Bjarnsholt T. Shaping the growth behaviour of biofilms initiated from bacterial aggregates. PLoS ONE. 2016; 11 (3): e0149683. https://doi.org/10.1371/journal.pone.0149683
  27. Kragh K.N., Hutchison J.B., Melaugh G., Rodesney C. Roberts A.E,. Irie Y., Jensen P.Ø., Diggle S.P .Allen R.J., Gordon V., Bjarnsholt T. Role of multicellular aggregates in biofilm formation. MBio. 2016; 7 (2): e00237. Published 2016 Mar 22. https://doi.org/10.1128/mBio.00237-16
  28. Hengge R., Gründling A., Jenal U., Ryan R., Yildiz F. Bacterial signal transduction by Cyclic Di-GMP and other nucleotide second messengers J. Bacteriol. 2016; 198: 15–26. https://doi.org/10.1128/JB.00331-15.
  29. Bay L., Kragh K.N., Eickhardt S.R., Poulsen S.S., Gjerdrum L.M.R., Ghathian K., Calum H., Ågren M.S., Bjarnsholt T. Bacterial aggregates establish at the edges of acute epidermal wounds Adv wound care (New Rochelle). 2018; 7 (4): 105–13. https://doi.org/10.1089/wound.2017.0770.
  30. Tuson, H.H., Weibel, D.B. Bacteria-surface interactions Soft matter. 2013; 9 (18): 4368–80. https://doi.org/10.1039/C3SM27705D
  31. Singh R., Ray P., Das A. Sharma M. Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J. Med Microbiol. 2009; 58 (Pt 8): 1067–73. https://doi.org/10.1099/jmm.0.009720-0.
  32. Berditsch M., Afonin S., Reuster J., Lux H., Schkolin K., Babii O., Radchenko D.S., Abdullah I., William N., Middel V., Strähle U., Nelson A., Valko K., Ulrich A.S. Supreme activity of gramicidin S against resistant, persistent and biofilm cells of staphylococci and enterococci. Sci Rep. 2019; 9 (1): 17938. https://doi.org/10.1038/s41598-019-54212-z.
  33. Santi L., Beys-da-Silva W.O., Berger M,. Calzolari D., Guimarães J.A., Moresco J.J., Yates J.R. 3rd.Proteomic profile of Cryptococcus neoformans biofilm reveals changes in metabolic processes. J. Proteome Res. 2014; 13 (3): 1545–59. https://doi.org/10.1021/pr401075f. Epub 2014 Jan 27.
  34. Donlan R.M., Costerton J.W. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002; 15 (2): 167–93. https://doi.org/10.1128/CMR.15.2.167-193.2002
  35. Keren-Paz A., Kolodkin-Gal I. A brick in the wall: Discovering a novel mineral component of the biofilm extracellular matrix. N. Biotechnol. 2019; 56: 9–15. https://doi.org/10.1016/j.nbt.2019.11.002.
  36. Bales P.M., Renke E.M., May S.L., Shen Y., Nelson D.C. Purification and characterization of biofilm-associated EPS exopolysaccharides from ESKAPE organisms and other pathogens. PLoS One. 2013; 8 (6): e67950. https://doi.org/10.1371/journal.pone.0067950. Print 2013.
  37. Sharma G., Rao S., Bansal A., Dang S., Gupta S., Gabrani R. Pseudomonas aeruginosa biofilm: Potential therapeutic targets. Biologicals. 2014; 42 (1): 1–7.
  38. Al Ahmar R., Kirby B.D., Yu H.D. Pyrimidine biosynthesis regulates small colony variant and mucoidy in Pseudomonas aeruginosa through sigma factor competition. J. Bacteriol. 2018; 201 (1): e00575–18. https://doi.org/10.1128/JB.00575-18.
  39. Arciola C.R., Campoccia D., Ravaioli S., & Montanaro L. Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol. 2015; 5: 7. Published online 2015. https://doi.org/10.3389/fcimb.2015.00007
  40. Matsumoto-Nakano M. Role of Streptococcus mutans surface proteins for biofilm formation. Japan Dent Sci Rev. 2017; 54 (1): 22–9. https://doi.org/10.1016/j.jdsr.2017.08.002
  41. Sommer R., Rox K., Wagner S., Hauck D., Henrikus S., Newsad S.,Arnold T., Ryckmans. Th. , Brönstrup M. Imberty A., Varrot A.,Hartmann R., Titz A. Anti-biofilm agents against Pseudomonas aeruginosa: a structure-activity relationship study of C-glycosidic Lecb inhibitors. J. Med Chem. 2019. https://doi.org/10.1021/acs.jmedchem.9b01120.
  42. Ibáñez de Aldecoa A. L., Zafra O., González-Pastor J. E. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front. Microbiol. 2017; 8: 1390. https://doi.org/10.3389/fmicb.2017.01390. eCollection 2017.
  43. Doroshenko N., Tseng B.S., Howlin R.P. Deacon J., Wharton J.A., Thurner P.J., Gilmore B.F., Parsek M.R., Stoodley P. Extracellular DNA impedes the transport of vancomycin in Staphylococcus epidermidis biofilms pre-exposed to sub-inhibitory concentrations of vancomycin Antimicrob. Agents Chemother. 2014; 58 (12): 7273–82.
  44. Cherny K.E., Sauer K. Untethering and degradation of the polysaccharide matrix are essential steps in the dispersion response of Pseudomonas aeruginosa biofilms J. Bacteriol. 2019; JB.00575–19. https://doi.org/10.1128/JB.00575-19.
  45. Ganesh P.S., Vishnupriya S., Vadivelu J., Mariappan V., Vellasamy K.M., Shankar, E.M. Intracellular survival and innate immune evasion of Burkholderia cepacia : improved understanding of quorum sensing controlled virulence factors, biofilm and inhibitors. Microbiol and Immunol. 2020; 64 (2): 87–98. https://doi.org/10.1111/1348-0421.12762. Epub 2020.
  46. Huang J., Shi Y., Zeng G., Gu Y., Chen G., Shi L., Hu Y, Tang B, Zhou, J. Acyl-homoserine lactone-based quorum sensing and quorum quenching hold promise to determine the performance of biological wastewater treatments: An overview. Chemosphere. 2016; 157: 137–51. https://doi.org/10.1016/j.chemosphere.2016.05.032
  47. Nieto V., Partridge J.D., Severin G., Lai R.-Z., Waters C., Parkinson J.S., Harshey R.M. Under elevated c-di-GMP in E. coli, YcgR alters flagellar motor bias and speed sequentially, with additional negative control of the flagellar regulon via the adaptor protein RssB. J. Bacteriol. 2019; 202 (1): e00578–19. https://doi.org/10.1128/JB.00578-19. Print 2019.
  48. Takeuchi K., Tsuchiya W., Noda N., Suzuki R., Yamazaki, T., & Haas, D. Lon protease negatively affects GacA protein stability and expression of the Gac/Rsm signal transduction pathway in Pseudomonas protegens. Environ Microbiol. 2014; 16 (8): 2538–49. https://doi.org/10.1111/1462-2920.12394
  49. Christiaen S.E.A., O’Connell Motherway M., Bottacini F., Lanigan N., Casey P.G., Huys G., Coenye T. Autoinducer-2 plays a crucial role in gut colonization and probiotic functionality of Bifidobacterium breve UCC2003. PLoS ONE. 2014; 9 (5): e98111. https://doi.org/10.1371/jouРНКl.pone.0098111
  50. Chatterjee M., D’Morris S., Paul V., Warrier S., Vasudevan A.K., Vanuopadath M, Nair SS, Paul-Prasanth B, Mohan CG, Biswas R. Mechanistic understanding of Phenyllactic acid mediated inhibition of quorum sensing and biofilm development in Pseudomonas aeruginosa. Appl Microbiol Biotechnol. 2017; 101 (22): 8223–36. https://doi.org/10.1007/s00253-017-8546-4. Epub 2017.