О РОЛИ PCSK9 В РАЗВИТИИ АТЕРОСКЛЕРОЗА: МОЛЕКУЛЯРНЫЕ АСПЕКТЫ

DOI: https://doi.org/10.29296/24999490-2021-02-02

А.М. Чаулин(1, 2), Д.В. Дупляков(1, 2) 1-ГБУЗ «Самарский областной клинический кардиологический диспансер», Российская Федерация, 443070, Самара, ул. Аэродромная, д. 43; 2-ФГБОУ ВО «Самарский государственный медицинский университет» Минздрава России, Российская Федерация, 443099, Самара, ул. Чапаевская, д. 89 E-mail: alekseymichailovich22976@gmail.com

Благодаря открытию пропротеиновой конвертазы субтилизин-кексинового типа 9 (PCSK9) и установлению ее роли в метаболизме липопротеинов появилась возможность создания новых групп эффективных препаратов для терапии дислипидемий. Основная функция PCSK9 состоит в элиминации рецепторов липопротеинов низкой плотности, что приводит к формированию гиперхолестеринемии – одного из ключевых факторов риска атеросклероза и сердечно-сосудистых заболеваний. Поэтому ингибирование PCSK9 стало новой стратегией гиполипидемических мероприятий. Для использования в клинической практике на данный момент одобрены моноклональные антитела (иммуноглобулины класса G) против PCSK9 – алирокумаб и эволокумаб. На этапе разработки и клинических испытаний находятся целый ряд дополнительных групп препаратов, механизм действия которых основан на угнетении экспрессии гена PCSK9, трансляции матричной РНК PCSK9 и ингибировании функции фермента PCSK9. В данном обзоре рассматривается роль PCSK9 в регуляции метаболизма липопротеинов, подробно описываются молекулярные механизмы регуляции экспрессии гена, кодирующего PCSK9. Также обсуждаются основные группы новых гиполипидемических анти-PCSK9 препаратов: моноклональные антитела против PCSK9, малые интерферирующие РНК, антисмысловые нуклеотиды, малые молекулы, вакцина против PCSK9.
Ключевые слова: 
сердечно-сосудистые заболевания, атеросклероз

Список литературы: 
  1. Чаулин А.М., Карслян Л.С., Григорьева Е.В., Нурбалтаева Д.А., Дупляков Д.В. Клинико-диагностическая ценность кардиомаркеров в биологических жидкостях человека. Кардиология. 2019; 59 (11): 66–75. DOI: 10.18087/cardio.2019.11.n414. [Chaulin A.M., Karslyan L.S., Grigoriyeva E.V., Nurbaltaeva D.A., Duplyakov D.V. Clinical and Diagnostic Value of Cardiac Markers in Human Biological Fluids. Kardiologiia. 2019; 59 (11): 66–75. DOI:10.18087/cardio.2019.11.n414 (in Russian)]
  2. Чаулин А.М., Григорьева Ю.В., Дупляков Д.В. Коморбидность хронической обструктивной болезни легких и сердечно-сосудистых заболеваний: общие факторы, патофизиологические механизмы и клиническое значение. Клиническая практика. 2020; 11 (1): 112–21. DOI: 10.17816/clinpract21218. [Chaulin A.M., Karslyan L.S., Duplyakov D.V. Non-coronarogenic causes of increased cardiac troponins in clinical practice. J. of Clinical Practice. 2020; 10 (4): 81–93. DOI: 10.17816/clinpract21218 (in Russian)]
  3. Лутай Ю.А., Крючкова О.Н., Ицкова Е.А., Турна Э.Ю. Современные перспективы улучшения контроля липидного обмена. Крымский терапевтический журнал. 2016; 2 (29): 12–6. [Lutai Y.A., Kryuchkova O.N., Itskova E.A., Turna E.Y. Modern prospects for improving the control of lipid metabolism. Krymskiy terapevticheskiy zhurnal. 2016; 2 (29): 12–6 (in Russian)]
  4. Abifadel M., Varret M., Rabès J.P., Allard D., Ouguerram K., Devillers M., Cruaud C., Benjannet S., Wickham L., Erlich D., Derré A., Villéger L., Farnier M., Beucler I., Bruckert E., Chambaz J., Chanu B., Lecerf J.M., Luc G., Moulin P., Weissenbach J., Prat A., Krempf M., Junien C., Seidah N.G., Boileau C. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet. 2003; 34 (2): 154–6. DOI: 10.1038/ng1161.
  5. Чаулин А.М., Дупляков Д.В. PCSK-9: современные представления о биологической роли и возможности использования в качестве диагностического маркера сердечно-сосудистых заболеваний. Часть 1. Кардиология: новости, мнения, обучение. 2019; 7 (2): 45–57. DOI: 10.24411/2309-1908-2019-12005. [Chaulin A.M., Duplyakov D.V. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 1. Kardiologiya: novosti, mneniya, obuchenie. Cardiology: News, Opinions, Training. 2019; 7 (2): 45–57. DOI: 10.24411/2309-1908-2019-12005 (in Russian)]
  6. Чаулин А.М., Дупляков Д.В. PCSK-9: современные представления о биологической роли и возможности использования в качестве диагностического маркера сердечно-сосудистых заболеваний. Часть 2. Кардиология: новости, мнения, обучение. 2019; 7 (4): 24–35. DOI: 10.24411/2309-1908-2019-14004. [Chaulin A.M., Duplyakov D.V. PCSK-9: modern views about biological role and possibilities of use as a diagnostic marker for cardiovascular diseases. Part 2. Kardiologiya: novosti, mneniya, obuchenie. Cardiology: News, Opinions, Training. 2019; 7 (4): 24–35. DOI: 10.24411/2309-1908-2019-14004 (in Russian)]
  7. Norata G.D., Tavori H., Pirillo A., Fazio S., Catapano A.L. Biology of proprotein convertase subtilisin kexin 9: beyond low-density lipoprotein cholesterol lowering. Cardiovasc Res. 2016; 112 (1): 429–42. DOI: 10.1093/cvr/cvw194.
  8. Han B., Eacho P.I., Knierman M.D., Troutt J.S., Konrad R.J., Yu X., Schroeder K.M. Isolation and characterization of the circulating truncated form of PCSK9. J. Lipid Res. 2014; 55 (7): 1505–14. DOI: 10.1194/jlr.M049346.
  9. Аверкова А.О. PCSK-9: регуляция биологической активности и связь с обменом жиров и углеводов. Клиническая практика. 2017; 17: 70–5. [Averkova A.O. PCSK9: Biological activity regulation and connection with lipid and carbohydrate metabolism. J. of Clinical Practice. 2017; 3 (31): 70–5 (in Russian)]
  10. Nishikido T., Ray K.K. Non-antibody Approaches to Proprotein Convertase Subtilisin Kexin 9 Inhibition: siRNA, Antisense Oligonucleotides, Adnectins, Vaccination, and New Attempts at Small-Molecule Inhibitors Based on New Discoveries. Front Cardiovasc Med. 2019; 5: 199. DOI: 10.3389/fcvm.2018.00199.
  11. Essalmani R., Susan-Resiga D., Chamberland A., Abifadel M., Creemers J.W., Boileau C., Seidah N.G., Prat A. In vivo evidence that furin from hepatocytes inactivates PCSK9. J. Biol. Chem. 2011; 286 (6): 4257–63. DOI: 10.1074/jbc.M110.192104.
  12. Lakoski S.G., Lagace T.A., Cohen J.C., Horton J.D., Hobbs H.H. Genetic and metabolic determinants of plasma PCSK9 levels. J. Clin Endocrinol Metab. 2009; 94 (7): 2537–43. DOI: 10.1210/jc.2009-0141.
  13. Krysa J.A., Ooi T.C., Proctor S.D., Vine D.F. Nutritional and Lipid Modulation of PCSK9: Effects on Cardiometabolic Risk Factors. J. Nutr. 2017; 147 (4): 473–81. DOI: 10.3945/jn.116.235069.
  14. Persson L., Cao G., Ståhle L., Sjöberg B.G., Troutt J.S., Konrad R.J., Gälman C., Wallén H., Eriksson M., Hafström I., Lind S., Dahlin M., Amark P., Angelin B., Rudling M. Circulating proprotein convertase subtilisin kexin type 9 has a diurnal rhythm synchronous with cholesterol synthesis and is reduced by fasting in humans. Arterioscler Thromb Vasc Biol. 2010; 30 (12): 2666–72. DOI: 10.1161/ATVBAHA.110.214130.
  15. Boyer M., Mitchell P.L., Poirier P., Alméras N., Tremblay A., Bergeron J., Després J.P., Arsenault B.J. Impact of a one-year lifestyle modification program on cholesterol efflux capacities in men with abdominal obesity and dyslipidemia. Am J. Physiol Endocrinol Metab. 2018; 315 (4): 460–8. DOI: 10.1152/ajpendo.00127.2018.
  16. Sahebkar A., Simental-Mendia L.E., Guerrero-Romero F. et al. Effect of statin therapy on plasma proprotein convertase subtilisin kexin 9 (PCSK9) concentrations: a systematic review and meta-analysis of clinical trials. Diabetes Obes. Metab. 2015; 17 (11): 1042–55. DOI: 10.1111/dom.12536
  17. Walley K.R. Role of lipoproteins and proprotein convertase subtilisin/kexin type 9 in endotoxin clearance in sepsis. Curr Opin Crit Care. 2016; 22 (5): 464–9. DOI: 10.1097/MCC.0000000000000351.
  18. Baragetti A., Grejtakova D., Casula M., Olmastroni E., Jotti G.S., Norata G.D., Catapano A.L., Bellosta S. Proprotein Convertase Subtilisin-Kexin type-9 (PCSK9) and triglyceride-rich lipoprotein metabolism: Facts and gaps. Pharmacol Res. 2018; 130: 1–11. DOI: 10.1016/j.phrs.2018.01.025.
  19. Cohen J., Pertsemlidis A., Kotowski I.K., Graham R., Garcia C.K., Hobbs H.H. Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9. Nat Genet. 2005; 37 (2): 161–5. DOI: 10.1038/ng1509.
  20. Brown M.S., Goldstein J.L. A receptor-mediated pathway for cholesterol homeostasis. Science. 1986; 232 (4746): 34–47. DOI: 10.1126/science.3513311.
  21. Leren T.P. Sorting an LDL receptor with bound PCSK9 to intracellular degradation. Atherosclerosis. 2014; 237 (1): 76–81. DOI: 10.1016/j.atherosclerosis.2014.08.038.
  22. Ference B.A., Cannon C.P., Landmesser U., Lüscher T.F., Catapano A.L., Ray K.K. Reduction of low density lipoprotein-cholesterol and cardiovascular events with proprotein convertase subtilisin-kexin type 9 (PCSK9) inhibitors and statins: an analysis of FOURIER, SPIRE, and the Cholesterol Treatment Trialists Collaboration. Eur Heart J. 2018; 39 (27): 2540–5. DOI: 10.1093/eurheartj/ehx450.
  23. Catapano A.L., Papadopoulos N. The safety of therapeutic monoclonal antibodies: implications for cardiovascular disease and targeting the PCSK9 pathway. Atherosclerosis. 2013; 228 (1): 18–28. DOI: 10.1016/j.atherosclerosis.2013.01.044.
  24. Leiter L.A., Teoh H., Kallend D., Wright R.S., Landmesser U., Wijngaard P.L.J., Kastelein J.J.P., Ray K.K. Inclisiran Lowers LDL-C and PCSK9 Irrespective of Diabetes Status: The ORION-1 Randomized Clinical Trial. Diabetes Care. 2019; 42 (1): 173–6. DOI: 10.2337/dc18-1491.
  25. Gupta N., Fisker N., Asselin M.C., Lindholm M., Rosenbohm C., Ørum H., Elmén J., Seidah N.G., Straarup E.M. A locked nucleic acid antisense oligonucleotide (LNA) silences PCSK9 and enhances LDLR expression in vitro and in vivo. PLoS One. 2010; 5 (5): e10682. DOI: 10.1371/journal.pone.0010682.
  26. Lipovsek D. Adnectins: engineered target-binding protein therapeutics. Protein Eng Des Sel. 2011; 24 (1–2): 3–9. DOI: 10.1093/protein/gzq097.
  27. Li W., Ward F.R., McClure K.F., Chang S.T., Montabana E., Liras S., Dullea R.G., Cate J.H.D. Structural basis for selective stalling of human ribosome nascent chain complexes by a drug-like molecule. Nat Struct Mol. Biol. 2019; 26 (6): 501–9. DOI: 10.1038/s41594-019-0236-8.
  28. Landlinger C., Pouwer M.G., Juno C., van der Hoorn J.W.A., Pieterman E.J., Jukema J.W., Staffler G., Princen H.M.G., Galabova G. The AT04A vaccine against proprotein convertase subtilisin/kexin type 9 reduces total cholesterol, vascular inflammation, and atherosclerosis in APOE*3Leiden.CETP mice. Eur Heart J. 2017; 38 (32): 2499–507. DOI: 10.1093/eurheartj/ehx260.
  29. Goldstein J.L., Brown M.S. The LDL receptor. Arterioscler Thromb Vasc Biol. 2009; 29 (4): 431–8. DOI: 10.1161/ATVBAHA.108.179564.
  30. Poirier S., Mayer G., Benjannet S., Bergeron E., Marcinkiewicz J., Nassoury N., Mayer H., Nimpf J., Prat A., Seidah N.G. The proprotein convertase PCSK9 induces the degradation of low density lipoprotein receptor (LDLR) and its closest family members VLDLR and ApoER2. J. Biol. Chem. 2008; 283 (4): 2363–72. DOI: 10.1074/jbc.M708098200.
  31. Ouguerram K., Chetiveaux M., Zair Y., Costet P., Abifadel M., Varret M., Boileau C., Magot T., Krempf M. Apolipoprotein B100 metabolism in autosomal-dominant hypercholesterolemia related to mutations in PCSK9. Arterioscler Thromb Vasc Biol. 2004; 24 (8): 1448–53. DOI: 10.1161/01.ATV.0000133684.77013.88.
  32. Sun H., Samarghandi A., Zhang N., Yao Z., Xiong M., Teng B.B. Proprotein convertase subtilisin/kexin type 9 interacts with apolipoprotein B and prevents its intracellular degradation, irrespective of the low-density lipoprotein receptor. Arterioscler Thromb Vasc Biol. 2012; 32 (7): 1585–95. DOI: 10.1161/ATVBAHA.112.250043.
  33. Rashid S., Tavori H., Brown P.E., Linton M.F., He J., Giunzioni I., Fazio S. Proprotein convertase subtilisin kexin type 9 promotes intestinal overproduction of triglyceride-rich apolipoprotein B lipoproteins through both low-density lipoprotein receptor-dependent and -independent mechanisms. Circulation. 2014; 130 (5): 431–41. DOI: 10.1161/CIRCULATIONAHA.113.006720.
  34. Dubuc G., Chamberland A., Wassef H., Davignon J., Seidah N.G., Bernier L., Prat A. Statins upregulate PCSK9, the gene encoding the proprotein convertase neural apoptosis-regulated convertase-1 implicated in familial hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2004; 24 (8): 1454–9. DOI: 10.1161/01.ATV.0000134621.14315.43.
  35. Bjermo H., Iggman D., Kullberg J., Dahlman I., Johansson L., Persson L., Berglund J., Pulkki K., Basu S., Uusitupa M., Rudling M., Arner P., Cederholm T., Ahlström H., Risérus U. Effects of n-6 PUFAs compared with SFAs on liver fat, lipoproteins, and inflammation in abdominal obesity: a randomized controlled trial. Am. J. Clin. Nutr. 2012; 95 (5): 1003–12. DOI: 10.3945/ajcn.111.030114.
  36. Galland L. Diet and inflammation. Nutr Clin Pract. 2010; 25 (6): 634–40. DOI: 10.1177/0884533610385703.
  37. Ou J., Tu H., Shan B., Luk A., DeBose-Boyd R.A., Bashmakov Y., Goldstein J.L., Brown M.S. Unsaturated fatty acids inhibit transcription of the sterol regulatory element-binding protein-1c (SREBP-1c) gene by antagonizing ligand-dependent activation of the LXR. Proc Natl Acad Sci USA. 2001; 98 (11): 6027–32. DOI: 10.1073/pnas.111138698.
  38. Cao A., Wu M., Li H., Liu J. Janus kinase activation by cytokine oncostatin M decreases PCSK9 expression in liver cells. J. Lipid Res. 2011; 52 (3): 518–30. DOI: 10.1194/jlr.M010603.
  39. Ruscica M., Ricci C., Macchi C., Magni P., Cristofani R., Liu J., Corsini A., Ferri N. Suppressor of Cytokine Signaling-3 (SOCS-3) Induces Proprotein Convertase Subtilisin Kexin Type 9 (PCSK9) Expression in Hepatic HepG2 Cell Line. J. Biol. Chem. 2016; 291 (7): 3508–19. DOI: 10.1074/jbc.M115.664706.
  40. Persson L., Gälman C., Angelin B., Rudling M. Importance of proprotein convertase subtilisin/kexin type 9 in the hormonal and dietary regulation of rat liver low-density lipoprotein receptors. Endocrinology. 2009; 150 (3): 1140–6. DOI: 10.1210/en.2008-1281.
  41. Li H., Dong B., Park S.W., Lee H.S., Chen W., Liu J. Hepatocyte nuclear factor 1alpha plays a critical role in PCSK9 gene transcription and regulation by the natural hypocholesterolemic compound berberine. J. Biol. Chem. 2009; 284 (42): 28885–95. DOI: 10.1074/jbc.M109.052407.
  42. Tao R., Xiong X., DePinho R.A., Deng C.X., Dong X.C. FoxO3 transcription factor and Sirt6 deacetylase regulate low density lipoprotein (LDL)-cholesterol homeostasis via control of the proprotein convertase subtilisin/kexin type 9 (Pcsk9) gene expression. J. Biol. Chem. 2013; 288 (41): 29252–9. DOI: 10.1074/jbc.M113.481473.
  43. Ai D., Chen C., Han S., Ganda A., Murphy A.J., Haeusler R., Thorp E., Accili D., Horton J.D., Tall A.R. Regulation of hepatic LDL receptors by mTORC1 and PCSK9 in mice. J. Clin. Invest. 2012; 122 (4): 1262–70. DOI: 10.1172/JCI61919.
  44. Li H., Liu J. The novel function of HINFP as a co-activator in sterol-regulated transcription of PCSK9 in HepG2 cells. Biochem J. 2012; 443 (3): 757–68. DOI: 10.1042/BJ20111645.
  45. Glerup S., Schulz R., Laufs U., Schlüter K.D. Physiological and therapeutic regulation of PCSK9 activity in cardiovascular disease. Basic Res Cardiol. 2017; 112 (3): 32. DOI: 10.1007/s00395-017-0619-0.
  46. Khan A.R., James M.N. Molecular mechanisms for the conversion of zymogens to active proteolytic enzymes. Protein Sci. 1998; 7 (4): 815–36. DOI: 10.1002/pro.5560070401.
  47. Poirier S., Mamarbachi M., Chen W.T., Lee A.S., Mayer G. GRP94 Regulates Circulating Cholesterol Levels through Blockade of PCSK9-Induced LDLR Degradation. Cell Rep. 2015; 13 (10): 2064–71. DOI: 10.1016/j.celrep.2015.11.006.
  48. Miller E.A., Beilharz T.H., Malkus P.N., Lee M.C., Hamamoto S., Orci L., Schekman R. Multiple cargo binding sites on the COPII subunit Sec24p ensure capture of diverse membrane proteins into transport vesicles. Cell. 2003; 114 (4): 497–509. DOI: 10.1016/s0092-8674(03)00609-3.
  49. Chen X.W., Wang H., Bajaj K., Zhang P., Meng Z.X., Ma D., Bai Y., Liu H.H., Adams E., Baines A., Yu G., Sartor M.A., Zhang B., Yi Z., Lin J., Young S.G., Schekman R., Ginsburg D. SEC24A deficiency lowers plasma cholesterol through reduced PCSK9 secretion. Elife. 2013; 2: e00444. DOI: 10.7554/eLife.00444.
  50. Gustafsen C., Kjolby M., Nyegaard M., Mattheisen M., Lundhede J., Buttenschøn H., Mors O., Bentzon J.F., Madsen P., Nykjaer A., Glerup S. The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab. 2014; 19 (2): 310–8. DOI: 10.1016/j.cmet.2013.12.006.
  51. Mayer G., Poirier S., Seidah N.G. Annexin A2 is a C-terminal PCSK9-binding protein that regulates endogenous low density lipoprotein receptor levels. J. Biol. Chem. 2008; 283 (46): 31791–801. DOI: 10.1074/jbc.M805971200.
  52. Della Pepa G., Bozzetto L., Annuzzi G., Rivellese A.A. Alirocumab for the treatment of hypercholesterolaemia. Expert Rev Clin. Pharmacol. 2017; 10 (6): 571–82. DOI: 10.1080/17512433.2017.1318063.
  53. Khoury E., Brisson D., Gaudet D. Preclinical discovery and development of evolocumab for the treatment of hypercholesterolemia. Expert Opin Drug Discov. 2020; 15 (4): 403–14. DOI: 10.1080/17460441.2020.
  54. Manniello M., Pisano M. Alirocumab (Praluent): First in the New Class of PCSK9 Inhibitors. P T. 2016; 41 (1): 28–53. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699483/
  55. Kasichayanula S., Grover A., Emery M.G., Gibbs M.A., Somaratne R., Wasserman S.M., Gibbs J.P. Clinical Pharmacokinetics and Pharmacodynamics of Evolocumab, a PCSK9 Inhibitor. Clin Pharmacokinet. 2018; 57 (7): 769–79. DOI: 10.1007/s40262-017-0620-7.
  56. Koren M.J., Sabatine M.S., Giugliano R.P., Langslet G., Wiviott S.D., Ruzza A., Ma Y., Hamer A.W., Wasserman S.M., Raal F.J. Long-Term Efficacy and Safety of Evolocumab in Patients With Hypercholesterolemia. J. Am. Coll. Cardiol. 2019; 74 (17): 2132–46. DOI: 10.1016/j.jacc.2019.08.1024.
  57. Чаулин А.М., Мазаев А.Ю., Александров А.Г. Роль пропротеин конвертазы субтилизин/кексин типа 9 (pcsk-9) в метаболизме холестерина и новые возможности липидкорригующей терапии. Международный научно-исследовательский журнал. 2019; 4–1 (82): 124–6. DOI: 10.23670/IRJ.2019.82.4.025. [Chaulin A.M., Mazaev A.Yu., Aleksandrov A.G. The role of proprotein convertase subtilisin/kexin of type 9 (pcsk-9) in cholesterol metabolism and new opportunities of lipid corrective therapy. International Research J. 2019; 4–1 (82): 124–6. DOI: 10.23670/IRJ.2019.82.4.025 (in Russian)]
  58. Agrawal N., Dasaradhi P.V., Mohmmed A., Malhotra P., Bhatnagar R.K., Mukherjee S.K. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev. 2003; 67 (4): 657–85. DOI: 10.1128/mmbr.67.4.657-685.2003.
  59. Nair J.K., Willoughby J.L., Chan A., Charisse K., Alam M.R., Wang Q., Hoekstra M., Kandasamy P., Kel’in A.V., Milstein S., Taneja N., O’Shea J., Shaikh S., Zhang L., van der Sluis R.J., Jung M.E., Akinc A., Hutabarat R., Kuchimanchi S., Fitzgerald K., Zimmermann T., van Berkel T.J., Maier M.A., Rajeev K.G., Manoharan M. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem Soc. 2014; 136 (49): 16958–61. DOI: 10.1021/ja505986a.
  60. Fitzgerald K., White S., Borodovsky A., Bettencourt B.R., Strahs A., Clausen V., Wijngaard P., Horton J.D., Taubel J., Brooks A., Fernando C., Kauffman R.S., Kallend D., Vaishnaw A., Simon A. A Highly Durable RNAi Therapeutic Inhibitor of PCSK9. N. Engl. J. Med. 2017; 376 (1): 41–51. DOI: 10.1056/NEJMoa1609243.
  61. Kosmas C.E., Muñoz Estrella A., Sourlas A., Silverio D., Hilario E., Montan P.D., Guzman E. Inclisiran: A New Promising Agent in the Management of Hypercholesterolemia. Diseases. 2018; 6 (3): 63. DOI: 10.3390/diseases6030063.
  62. Ray K.K., Wright R.S., Kallend D., Koenig W., Leiter L.A., Raal F.J., Bisch J.A., Richardson T., Jaros M., Wijngaard P.L.J., Kastelein J.J.P. ORION-10 and ORION-11 Investigators. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N. Engl. J. Med. 2020; 382 (16): 1507–19. DOI: 10.1056/NEJMoa1912387.
  63. Van Poelgeest E.P., Hodges M.R., Moerland M., Tessier Y., Levin A.A., Persson R., Lindholm M.W., Dumong Erichsen K., Ørum H., Cohen A.F., Burggraaf J. Antisense-mediated reduction of proprotein convertase subtilisin/kexin type 9 (PCSK9): a first-in-human randomized, placebo-controlled trial. Br. J. Clin. Pharmacol. 2015; 80 (6): 1350–61. DOI: 10.1111/bcp.12738.
  64. Miyosawa K., Watanabe Y., Murakami K., Murakami T., Shibata H., Iwashita M., Yamazaki H., Yamazaki K., Ohgiya T., Shibuya K., Mizuno K., Tanabe S., Singh S.A., Aikawa M. New CETP inhibitor K-312 reduces PCSK9 expression: a potential effect on LDL cholesterol metabolism. Am J Physiol Endocrinol Metab. 2015; 309 (2): 177–90. DOI: 10.1152/ajpendo.00528.2014.
  65. Steneberg P., Lindahl E., Dahl U., Lidh E., Straseviciene J., Backlund F., Kjellkvist E., Berggren E., Lundberg I., Bergqvist I., Ericsson M., Eriksson B., Linde K., Westman J., Edlund T., Edlund H. PAN-AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight. 2018; 3 (12): e99114. DOI: 10.1172/jci.insight.99114.
  66. Seidah N.G., Poirier S., Denis M., Parker R., Miao B., Mapelli C., Prat A., Wassef H., Davignon J., Hajjar K.A., Mayer G. Annexin A2 is a natural extrahepatic inhibitor of the PCSK9-induced LDL receptor degradation. PLoS One. 2012; 7 (7): e41865. DOI: 10.1371/journal.pone.0041865.
  67. Porteus M. Genome Editing: A New Approach to Human Therapeutics. Annu Rev Pharmacol Toxicol. 2016; 56: 163–90. DOI: 10.1146/annurev-pharmtox-010814-124454.
  68. Rashid S., Curtis D.E., Garuti R., Anderson N.N., Bashmakov Y., Ho Y.K., Hammer R.E., Moon Y.A., Horton J.D. Decreased plasma cholesterol and hypersensitivity to statins in mice lacking Pcsk9. Proc Natl Acad Sci USA. 2005; 102 (15): 5374–9. DOI: 10.1073/pnas.0501652102.
  69. Carreras A., Pane L.S., Nitsch R., Madeyski-Bengtson K., Porritt M., Akcakaya P., Taheri-Ghahfarokhi A., Ericson E., Bjursell M., Perez-Alcazar M., Seeliger F., Althage M., Knöll R., Hicks R., Mayr L.M., Perkins R., Lindén D., Borén J., Bohlooly-Y.M., Maresca M. In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model. BMC Biol. 2019; 17 (1): 4. DOI: 10.1186/s12915-018-0624-2.