РОЛЬ VEGF И микроРНК В ФОРМИРОВАНИИ ЭНДОМЕТРИОИДНОГО ФЕНОТИПА КЛЕТОК ЭНДОМЕТРИЯ

DOI: https://doi.org/10.29296/24999490-2021-04-02

Р.В. Украинец(1, 2), Ю.С. Корнева(1, 2) 1-ФГБОУ ВО «Смоленский государственный медицинский университет» Минздрава России, Российская Федерация, 214019, Смоленск, ул. Крупской, 28; 2-ОГБУЗ «Смоленский областной институт патологии», Российская Федеpация, 214020, Смоленск, пр. Гагарина, 27 E-mail: ukrainets.roman@yandex.ru

Данный обзор является попыткой обобщения современных данных о роли микроРНК в патогенезе эндометриоза и их патогенетической связи с основными патоморфологическими проявлениями при данной патологии. На сегодняшний день исследуется большое количество микроРНК с целью уточнения патогенеза эндометриоза, а также его надежного диагностического маркера. Известно, что клетки эндометриоидной гетеротопии отличаются от клеток нормального эндометрия, что в литературе именуется как «формирование эндометриоидного фенотипа» и, вероятно, зависит от изменения экспрессии специфичных микроРНК. Возрастающая экспрессия VEGF при эндометриозе имеет общую патогенетическую ось с нарушением экспрессии ряда микроРНК, а именно – miR-29c, miR-33b, miR-199a-5p и miR-210. Вероятно, изменения экспрессии именно указанных микроРНК приводят к формированию эндометриоидного фенотипа, а последующий патогенетический каскад в виде изменения экспрессии miR- 145 и miR-451 участвует в формировании эндометриоз-ассоциированного бесплодия; в свою очередь, изменение экспрессии miR-199a-5p, miR-125b-5р и miR-191 повышает риск малигнизации эндометриоидной гетеротопии. Полученные данные могут послужить для разработки как профилактики, так и таргетной терапии эндометриоза и связанного с ним бесплодия, а также для предотвращения развития эндометриоз-ассоциированного рака.
Ключевые слова: 
эндометриоз, микроРНК, VEGF

Список литературы: 
  1. Файзуллин Л.З., Карнаухов В.Н., Адамян Л.В., Горшкова О.Н., Хилькевич Е.Г., Чупрынин В.Д., Трофимов Д.Ю., Аракелян А.С. Влияние окружающей ткани на оценку экспрессии микроРНК в эктопическом эндометрии при тяжелом эндометриозе. Акушерство и гинекология. 2016; 9: 109–13. [Fajzullin L.Z., Karnauhov V.N., Adamyan L.V., Gorshkova O.N., Hil’kevich E.G., CHuprynin V.D., Trofimov D.YU., Arakelyan A.S. Influence of surrounding tissue on the assessment of microRNA expression in ectopic endometrium in severe endometriosis. Akusherstvo i ginekologiya. 2016; 9: 109–13 (in Russian)]
  2. Альмова И.К., Бобров М.Ю., Чупрынин В.Д., Хилькевич Е.Г., Чурсин В.В., Мельников М.В., Буралкина Н.А., Вередченко А.В. Диагностическая роль микроРНК как биологических маркеров наружного (ретроцервикального) эндометриоза. Акушерство и гинекология. 2017; 8: 34–40. [Al’mova I.K., Bobrov M.YU., CHuprynin V.D., Hil’kevich E.G., CHursin V.V., Mel’nikov M.V., Buralkina N.A., Veredchenko A.V. Diagnostic role of microRNAs as biological markers of external (retrocervical) endometriosis. Akusherstvo i ginekologiya. 2017; 8: 34–40 (in Russian)]
  3. Chen K., Rajewsky N. The evolution of gene regulation by transcription factors and microRNAs. Nature Reviews Genetics. 2007; 8 (2): 93–103.
  4. Capobianco A., Monno A., Cottone L., Venneri M.A., Biziato D., Di Puppo F., Ferrari S., De Palma M., Manfredi A.A., Rovere-Querini P. Proangiogenic Tie2(+) macrophages infiltrate human and murine endometriotic lesions and dictate their growth in a mouse model of the disease. Am J Pathol. 2011; 179 (5): 2651–9. https://doi.org/10.1016/j.ajpath.2011.07.029
  5. Machado D.E., Rodrigues-Baptista K.C., Alessandra-Perini J., Soares de Moura R., Santos T.A., Pereira K.G., Marinho da Silva Y., Souza P.J., Nasciutti L.E., Perini J.A. Euterpe oleracea Extract (Açai) Is a Promising Novel Pharmacological Therapeutic Treatment for Experimental Endometriosis. PLoS One. 2016; 11 (11): e0166059. https://doi.org/10.1371/journal.pone.0166059
  6. Okamoto M., Nasu K., Abe W., Aoyagi Y., Kawano Y., Kai K., Moriyama M., Narahara H. Enhanced miR-210 expression promotes the pathogenesis of endometriosis through activation of signal transducer and activator of transcription 3. Hum Reprod. 2015; 30 (3): 632–41. https://doi.org/10.1093/humrep/deu332
  7. Yang W.W., Hong L., Xu X.X., Wang Q., Huang J.L., Jiang L. Regulation of miR-33b on endometriosis and expression of related factors. Eur Rev Med Pharmacol Sci. 2017; 21 (9): 2027–33.
  8. Braza-Boïls A., Salloum-Asfar S., Mari-Alexandre J., Arroyo A.B., González-Conejero R., Barceló-Molina M., Garcia-Oms J., Vicente V., Estellés A., Gilabert-Estellés J., Martinez C. Peritoneal fluid modifies the microRNA expression profile in endometrial and endometriotic cells from women with endometriosis. Hum Reprod. 2015; 30 (10): 2292–302. https://doi.org/10.1093/humrep/dev204
  9. Hsu C.Y., Hsieh T.H., Tsai C.F., Tsai H.P., Chen H.S., Chang Y., Chuang H.Y., Lee J.N., Hsu Y.L., Tsai E.M. miRNA-199a-5p regulates VEGFA in endometrial mesenchymal stem cells and contributes to the pathogenesis of endometriosis. J. Pathol. 2014; 232 (3): 330–43. https://doi.org/10.1002/path.4295
  10. Yu H., Zhong Q., Xia Y., Li E., Wang S., Ren R. MicroRNA-2861 targets STAT3 and MMP2 to regulate the proliferation and apoptosis of ectopic endometrial cells in endometriosis. Pharmazie. 2019; 74 (4): 243–9. https://doi.org/10.1691/ph.2019.8881
  11. Abe W., Nasu K., Nakada C., Kawano Y., Moriyama M., Narahara H. miR-196b targets c-myc and Bcl-2 expression, inhibits proliferation and induces apoptosis in endometriotic stromal cells. Hum Reprod. 2013; 28(3): 750-61. https://doi.org/10.1093/humrep/des446
  12. Shi X.Y., Gu L., Chen J., Guo X.R., Shi Y.L. Downregulation of miR-183 inhibits apoptosis and enhances the invasive potential of endometrial stromal cells in endometriosis. Int J. Mol. Med. 2014; 33 (1): 59–67. https://doi.org/10.3892/ijmm.2013.1536
  13. He S.Z., Li J., Bao H.C., Wang M.M., Wang X.R., Huang X., Li F.H., Zhang W., Xu A.L., Fang H.C., Sheng Y.X. G protein coupled estrogen receptor/miR 148a/human leukocyte antigen G signaling pathway mediates cell apoptosis of ovarian endometriosis. Mol Med Rep. 2018; 18 (1): 1141–8. https://doi.org/10.3892/mmr.2018.9039
  14. Liu S., Qiu J., Tang X., Cui H., Zhang Q., Yang Q. LncRNA-H19 regulates cell proliferation and invasion of ectopic endometrium by targeting ITGB3 via modulating miR-124-3p. Exp Cell Res. 2019; 381 (2): 215–22. https://doi.org/10.1016/j.yexcr.2019.05.010
  15. Hsu C.Y., Hsieh T.H., Er T.K., Chen H.S., Tsai C.C., Tsai E.M. MiR 381 regulates cell motility, growth and colony formation through PIK3CA in endometriosis associated clear cell and endometrioid ovarian cancer. Oncol Rep. 2018; 40 (6): 3734–42. https://doi.org/10.3892/or.2018.6779
  16. Du X.H., Shi G., Lü D.H., Wang Y.H., Chen J.T., Zheng Q., Yin X. The Expression of microRNA-221 in Endometriosis and Its Impact on Endometrial Stromal Cells. Sichuan Da Xue Xue Bao Yi Xue Ban. 2018; 49 (4): 546–50.
  17. Adammek M., Greve B., Kässens N., Schneider C., Brüggemann K., Schüring A.N., Starzinski-Powitz A., Kiesel L., Götte M. MicroRNA miR-145 inhibits proliferation, invasiveness, and stem cell phenotype of an in vitro endometriosis model by targeting multiple cytoskeletal elements and pluripotency factors. Fertil Steril. 2013; 99 (5): 1346–55.e5. https://doi.org/10.1016/j.fertnstert.2012.11.055
  18. Zhang H., Li G., Sheng X., Zhang S. Upregulation of miR-33b promotes endometriosis via inhibition of Wnt/β catenin signaling and ZEB1 expression. Mol Med Rep. 2019; 19 (3): 2144–52. https://doi.org/10.3892/mmr.2019.9870
  19. Zhang P., Sun Y., Ma L. ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle. 2015; 14 (4): 481–7. https://doi.org/10.1080/15384101.2015.1006048
  20. Senol S., Sayar I., Ceyran A.B., Ibiloglu I., Akalin I., Firat U. Stromal Clues in Endometrial Carcinoma: Loss of Expression of β-Catenin, Epithelial-Mesenchymal Transition Regulators, and Estrogen-Progesterone Receptor. Int J. Gynecol Pathol. 2016; 35 (3): 238–48. https://doi.org/10.1097/PGP.0000000000000233
  21. Konrad L., Gronbach J., Horné F., Mecha E.O., Berkes E., Frank M. Similar Characteristics of Endometrial and Endometriotic Epithelial Cells. Reprod Sci. 2019; 26 (1): 49–59. https://doi.org/10.1177/1933719118756745
  22. Oh S.J., Shin J.H., Kim T.H., Lee H.S., Yoo J.Y., Ahn J.Y. β-Catenin activation contributes to the pathogenesis of adenomyosis through epithelial-mesenchymal transition. J. Pathol. 2013; 231 (2): 210–22. https://doi.org/10.1002/path.4224
  23. Liang Z., Chen Y., Zhao Y., Xu C., Zhang A., Zhang Q., Wang D., He J., Hua W., Duan P. miR-200c suppresses endometriosis by targeting MALAT1 in vitro and in vivo. Stem Cell Res Ther. 2017; 8 (1): 251. https://doi.org/10.1186/s13287-017-0706-z
  24. Eggers J.C., Martino V., Reinbold R., Schäfer S.D., Kiesel L., Starzinski-Powitz A., Schüring A.N., Kemper B., Greve B., Götte M. microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4. Reprod Biomed Online. 2016; 32 (4): 434–45. https://doi.org/10.1016/j.rbmo.2015.12.013
  25. Dai L., Gu L.Y., Zhu J., Shi J., Wang Y., Ji F., Di W. Regulation of microRNA-199a on adhesion, migration and invasion ability of human endometrial stromal cells. Zhonghua Fu Chan Ke Za Zhi. 2011; 46 (11): 817–21.
  26. Wang X.Q., Zhou W.J., Luo X.Z., et al. Synergistic effect of regulatory T cells and proinflammatory cytokines in angiogenesis in the endometriotic milieu. Hum Reprod. 2017; 32 (6): 1304–17. https://doi.org/10.1093/humrep/dex067
  27. Hawkins S.M., Creighton C.J., Han D.Y., Zariff A., Anderson M.L., Gunaratne P.H., Matzuk M.M. Functional microRNA involved in endometriosis. Mol Endocrinol. 2011; 25 (5): 821–32. https://doi.org/10.1210/me.2010-0371
  28. Nothnick W.B., Graham A., Holbert J., Weiss M.J. miR-451 deficiency is associated with altered endometrial fibrinogen alpha chain expression and reduced endometriotic implant establishment in an experimental mouse model. PLoS One. 2014; 9 (6): e100336. https://doi.org/10.1371/journal.pone.0100336
  29. Cheng F., Lu L., Wang H., Cheng H., Zhang D. Expression and Significance of miR-126 and miR-145 in Infertility due to Endometriosis. J. Coll Physicians Surg Pak. 2019; 29 (6): 585–7. https://doi.org/10.29271/jcpsp.2019.06.585
  30. Li X., Zhang W., Fu J., Xu Y., Gu R., Qu R., Li L., Sun Y., Sun X. MicroRNA-451 is downregulated in the follicular fluid of women with endometriosis and influences mouse and human embryonic potential. Reprod Biol Endocrinol. 2019; 17 (1): 96. https://doi.org/10.1186/s12958-019-0538-z
  31. Yang P., Wu Z., Ma C., Pan N., Wang Y., Yan L. Endometrial miR-543 Is Downregulated During the Implantation Window in Women With Endometriosis-Related Infertility. Reprod Sci. 2019; 26 (7): 900–8. https://doi.org/10.1177/1933719118799199
  32. Petracco R., Dias A.C.O., Taylor H., Petracco Á., Badalotti M., Michelon J.D.R., Marinowic D.R., Hentschke M., Azevedo P.N., Zanirati G., Machado D.C. Evaluation of miR-135a/b expression in endometriosis lesions. Biomed Rep. 2019; 11 (4): 181–7. https://doi.org/10.3892/br.2019.1237
  33. Petracco R., Grechukhina O., Popkhadze S., Massasa E., Zhou Y., Taylor H.S. MicroRNA 135 regulates HOXA10 expression in endometriosis. J. Clin Endocrinol Metab. 2011; 96 (12): 1925–33. https://doi.org/10.1210/jc.2011-1231
  34. Pei T., Liu C., Liu T., Xiao L., Luo B., Tan J., Li X., Zhou G., Duan C., Huang W. miR-194-3p Represses the Progesterone Receptor and Decidualization in Eutopic Endometrium From Women With Endometriosis. Endocrinology. 2018; 159 (7): 2554–62. https://doi.org/10.1210/en.2018-00374
  35. Sultana S., Kajihara T., Mizuno Y., Sato T., Oguro T., Kimura M., Akita M., Ishihara O. Overexpression of microRNA-542-3p attenuates the differentiating capacity of endometriotic stromal cells. Reprod Med Biol. 2017; 16 (2): 170–8. https://doi.org/10.1002/rmb2.12028
  36. Maged A.M., Deeb W.S., El Amir A., Zaki S.S., El Sawah H., Al Mohamady M., Metwally A.A., Katta M.A. Diagnostic accuracy of serum miR-122 and miR-199a in women with endometriosis. Int J. Gynaecol Obstet. 2018; 141 (1): 14–9. https://doi.org/10.1002/ijgo.12392
  37. Kawabata A., Yanaihara N., Nagata C., Saito M., Noguchi D., Takenaka M., Iida Y., Takano H., Yamada K., Iwamoto M., Kiyokawa T., Okamoto A. Prognostic impact of interleukin-6 expression in stage I ovarian clear cell carcinoma. Gynecol Oncol. 2017; 146 (3): 609–14. https://doi.org/10.1016/j.ygyno.2017.06.027
  38. Nematian S.E., Mamillapalli R., Kadakia T.S., Majidi Zolbin M., Moustafa S., Taylor H.S. Systemic Inflammation Induced by microRNAs: Endometriosis-Derived Alterations in Circulating microRNA 125b-5p and Let-7b-5p Regulate Macrophage Cytokine Production. J. Clin Endocrinol Metab. 2018; 103 (1): 64–74. https://doi.org/10.1210/jc.2017-01199
  39. Tian X., Xu L., Wang P. MiR-191 inhibits TNF-α induced apoptosis of ovarian endometriosis and endometrioid carcinoma cells by targeting DAPK1. Int J. Clin Exp Pathol. 2015; 8 (5): 4933–42.
  40. Dong M., Yang P., Hua F. MiR-191 modulates malignant transformation of endometriosis through regulating TIMP3. Med Sci Monit. 2015; 21: 915–20. https://doi.org/10.12659/MSM.893872