Молекулярные механизмы лекарственной устойчивости опухолей

DOI: https://doi.org/10.29296/24999490-2023-02-01

Е.В. Окладникова, И.С. Зинченко, Т.Г. Рукша
ФГБОУ ВО «Красноярский государственный медицинский университет
им. проф. В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации,
Российская Федерация, 660022, Красноярский край, Красноярск, ул. Партизана Железняка, 1

Введение. Преодоление устойчивости к противоопухолевым препаратам при лечении злокачественных новообразований является актуальной проблемой последних десятилетий. К сожалению, нет какого-то единого механизма развития резистентности. Изменения, возникающие в здоровой клетке при трансформации ее в злокачественную, могут приводить к развитию первичной резистентности, а вторичная резистентность происходит уже как результат лечения химиотерапевтическими препаратами. Цель обзора. Обобщить современные данные о механизмах развития лекарственной устойчивости к химиотерапевтическим средствам при лечении злокачественных новообразований с целью выбора и реализации возможных путей ее преодоления. Материал и методы. Материалами послужили результаты исследований по данной теме за последние 15 лет, с 2007 по 2022 годы. Анализировались публикации, входящие в базы данных PubMed, Medline, EMBASE. Результаты. Анализ результатов исследований показал, что среди механизмов развития лекарственной устойчивости выделяют изменения активности энергетических и метаболических процессов, структурные и(или) функциональные изменения экспрессии и функции генов и белков опухолевой клетки. Все это может приводить к нарушению поступления лекарственного вещества в клетку опухоли, его активному выведению из клетки и организма пациента, недостаточной, непродолжительной или извращенной реакции злокачественной опухоли на лекарственный препарат. При этом гетерогенность клеток опухоли и клеток ее метастазов приводит к возможности существования одновременно нескольких механизмов лекарственной резистентности у одного и того же пациента или у разных пациентов с одним гистологическим типом опухоли. Преодоление или устранение одних механизмов резистентности может приводить к развитию других. Заключение. Изучение механизмов развития резистентности к противоопухолевым препаратам позволит оптимизировать фармакотерапию и улучшить качество и продолжительность жизни пациентов, страдающих онкологическими заболеваниями.
Ключевые слова: 
лекарственная устойчивость, резистентность к противоопухолевым препаратам, патогенез лекарственной резистентности, химиотерапия
Для цитирования: 
Окладникова Е.В., Зинченко И.С., Рукша Т.Г. Молекулярные механизмы лекарственной устойчивости опухолей. Молекулярная медицина, 2023; (2): 3-10https://doi.org/10.29296/24999490-2023-02-01

Список литературы: 
  1. Wajapeyee N., Gupta R. Epigenetic Alterations and Mechanisms That Drive Resistance to Targeted Cancer Therapies. Cancer Res. 2021; 81 (22): 5589–95. DOI: 10.1158/0008-5472.CAN-21-1606.
  2. Goldstein M.N., Slotnick I.J., Journey L.J. In vitro studies with HeLa cell line sensitive and resistant to actinomycin D. Ann N. Y. Acad Sci. 1960; 89: 474–83. DOI: 10.1111/j.1749-6632.1960.tb20171.x.
  3. Dallavalle S., Dobričić V., Lazzarato L., Gazzano E., Machuqueiro M., Pajeva I., Tsakovska I., Zidar N., Fruttero R. Improvement of conventional anti-cancer drugs as new tools against multidrug resistant tumors. Drug Resist Updat. 2020; 50: 100682. DOI: 10.1016/j.drup.2020.100682.
  4. Chen K.G., Sikic B.I. Molecular pathways: regulation and therapeutic implications of multidrug resistance. Clin Cancer Res. 2012; 18 (7): 1863–9. DOI: 10.1158/1078-0432.CCR-11-1590.
  5. Zhang J.T. Use of arrays to investigate the contribution of ATP-binding cassette transporters to drug resistance in cancer chemotherapy and prediction of chemosensitivity. Cell Res. 2007; 17 (4): 311–23. DOI: 10.1038/cr.2007.15.
  6. Robey R.W., Pluchino K.M., Hall M.D., Fojo A.T., Bates S.E., Gottesman M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat Rev Cancer. 2018; 18 (7): 452–64. DOI: 10.1038/s41568-018-0005-8.
  7. Fletcher J.I., Williams R.T., Henderson M.J., Norris M.D., Haber M. ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist Updat. 2016; 26: 1–9. DOI: 10.1016/j.drup.2016.03.001.
  8. Sana G., Madigan J.P., Gartner J.J., Fourrez M., Lin J., Qutob N., Narayan J., Shukla S., Ambudkar S.V., Xia D., Rosenberg S.A., Gottesman M.M., Samuels Y., Gillet J.P. Exome Sequencing of ABCB5 Identifies Recurrent Melanoma Mutations that Result in Increased Proliferative and Invasive Capacities. J. Invest Dermatol. 2019; 139 (9): 1985–92.e10. DOI: 10.1016/j.jid.2019.01.036.
  9. Sauna Z.E., Kim I.W., Ambudkar S.V. Genomics and the mechanism of P-glycoprotein (ABCB1). J. Bioenerg Biomembr. 2007; 39 (5–6): 481–7. DOI: 10.1007/s10863-007-9115-9.
  10. Riordan J.R., Deuchars K., Kartner N., Alon N., Trent J., Ling V. Amplification of P-glycoprotein genes in multidrug-resistant mammalian cell lines. Nature. 1985; 316 (6031): 817–9. DOI: 10.1038/316817a0.
  11. Schinkel A.H., Smit J.J., van Tellingen O., Beijnen J.H., Wagenaar E., van Deemter L., Mol C.A., van der Valk M.A., Robanus-Maandag E.C., te Riele H.P. et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell. 1994; 77 (4): 491–502. DOI: 10.1016/0092-8674(94)90212-7.
  12. Halder J., Pradhan D., Kar B., Ghosh G., Rath G. Nanotherapeutics approaches to overcome P-glycoprotein-mediated multi-drug resistance in cancer. Nanomedicine. 2022; 40: 102494. DOI: 10.1016/j.nano.2021.102494.
  13. Nikolaou M., Pavlopoulou A., Georgakilas A.G., Kyrodimos E. The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis. 2018; 35 (4): 309–18. DOI: 10.1007/s10585-018-9903-0.
  14. Bukowski K., Kciuk M., Kontek R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int J. Mol. Sci. 2020; 21 (9): 3233. DOI: 10.3390/ijms21093233.
  15. Binkhathlan Z., Lavasanifar A. P-glycoprotein inhibition as a therapeutic approach for overcoming multidrug resistance in cancer: current status and future perspectives. Curr Cancer Drug Targets. 2013; 13 (3): 326–46. DOI: 10.2174/15680096113139990076.
  16. Low F.G., Shabir K., Brown J.E., Bill R.M., Rothnie A.J. Roles of ABCC1 and ABCC4 in Proliferation and Migration of Breast Cancer Cell Lines. Int J. Mol. Sci. 2020; 21 (20): 7664. DOI: 10.3390/ijms21207664.
  17. Yin J.Y., Huang Q., Yang Y., Zhang J.T., Zhong M.Z., Zhou H.H., Liu Z.Q. Characterization and analyses of multidrug resistance-associated protein 1 (MRP1/ABCC1) polymorphisms in Chinese population. Pharmacogenet Genomics. 2009; 19 (3): 206–16. DOI: 10.1097/FPC.0b013e328323f680.
  18. Chen K.G., Valencia J.C., Gillet J.P., Hearing V.J., Gottesman M.M. Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell Melanoma Res. 2009; 22 (6): 740–9. DOI: 10.1111/j.1755-148X.2009.00630.x.
  19. Sorf A., Vagiannis D., Ahmed F., Hofman J., Ceckova M. Dabrafenib inhibits ABCG2 and cytochrome P450 isoenzymes; potential implications for combination anticancer therapy. Toxicol Appl Pharmacol. 2022; 434: 115797. DOI: 10.1016/j.taap.2021.115797.
  20. Schatton T., Murphy G.F., Frank N.Y., Yamaura K., Waaga-Gasser A.M., Gasser M., Zhan Q., Jordan S., Duncan L.M., Weishaupt C., Fuhlbrigge R.C., Kupper T.S., Sayegh M.H., Frank M.H. Identification of cells initiating human melanomas. Nature. 2008; 451 (7176): 345–9. DOI: 10.1038/nature06489.
  21. Chartrain M., Riond J., Stennevin A., Vandenberghe I., Gomes B., Lamant L., Meyer N., Gairin J.E., Guilbaud N., Annereau J.P. Melanoma chemotherapy leads to the selection of ABCB5-expressing cells. PLoS One. 2012; 7 (5): e36762. DOI: 10.1371/journal.pone.0036762.
  22. Pathania S., Bhatia R., Baldi A., Singh R., Rawal R.K. Drug metabolizing enzymes and their inhibitors’ role in cancer resistance. Biomed Pharmacother. 2018; 105: 53–65. DOI: 10.1016/j.biopha.2018.05.117.
  23. Li Y., Steppi A., Zhou Y., Mao F., Miller P.C., He M.M., Zhao T., Sun Q, Zhang J. Tumoral expression of drug and xenobiotic metabolizing enzymes in breast cancer patients of different ethnicities with implications to personalized medicine. Sci Rep. 2017; 7 (1): 4747. DOI: 10.1038/s41598-017-04250-2.
  24. Wang H., Gao X., Zhang X., Gong W., Peng Z., Wang B., Wang L., Chang S., Ma P., Wang S. Glutathione S-Transferase Gene Polymorphisms are Associated with an Improved Treatment Response to Cisplatin-Based Chemotherapy in Patients with Non-Small Cell Lung Cancer (NSCLC): A Meta-Analysis. Med Sci Monit. 2018; 24: 7482–92. DOI: 10.12659/MSM.912373.
  25. Pacholak L.M., Amarante M.K., Guembarovski R.L., Watanabe M.A.E., Panis C. Polymorphisms in GSTT1 and GSTM1 genes as possible risk factors for susceptibility to breast cancer development and their influence in chemotherapy response: a systematic review. Mol Biol Rep. 2020; 47 (7): 5495–501. DOI: 10.1007/s11033-020-05555-8.
  26. Patel N., Chatterjee S.K., Vrbanac V., Chung I., Mu C.J., Olsen R.R., Waghorne C., Zetter B.R. Rescue of paclitaxel sensitivity by repression of Prohibitin1 in drug-resistant cancer cells. Proc Natl Acad Sci USA. 2010; 107 (6): 2503–8. DOI: 10.1073/pnas.0910649107.
  27. Jardim B.V., Moschetta M.G., Leonel C., Gelaleti G.B., Regiani V.R., Ferreira L.C., Lopes J.R., Zuccari D.A. Glutathione and glutathione peroxidase expression in breast cancer: an immunohistochemical and molecular study. Oncol Rep. 2013; 30 (3): 1119–28. DOI: 10.3892/or.2013.2540.
  28. . Ji Y., Dai F., Yan S., Shi J.Y., Zhou B. Identification of Catechol-Type Diphenylbutadiene as a Tyrosinase-Activated Pro-oxidative Chemosensitizer against Melanoma A375 Cells via Glutathione S-Transferase Inhibition. J. Agric Food Chem. 2019; 67 (32): 9060–9. DOI: 10.1021/acs.jafc.9b02875.
  29. Schadendorf D., Jurgovsky K., Kohlmus C.M., Czarnetzki B.M. Glutathione and related enzymes in tumor progression and metastases of human melanoma. J. Invest Dermatol. 1995; 105 (1): 109–12. DOI: 10.1111/1523-1747.ep12313403.
  30. Drozd E., Gruber B., Marczewska J., Drozd J., Anuszewska E. Intracellular glutathione level and efflux in human melanoma and cervical cancer cells differing in doxorubicin resistance. Postepy Hig Med Dosw (Online). 2016; 70: 319–28. DOI: 10.5604/17322693.1199712.
  31. Hassan M., Watari H., AbuAlmaaty A., Ohba Y., Sakuragi N. Apoptosis and molecular targeting therapy in cancer. Biomed Res Int. 2014; 2014: 150845. DOI: 10.1155/2014/150845.
  32. Bai L., Wang S. Targeting apoptosis pathways for new cancer therapeutics. Annu Rev Med. 2014; 65: 139–55. DOI: 10.1146/annurev-med-010713-141310.
  33. Hind C.K., Carter M.J., Harris C.L., Chan H.T., James S., Cragg M.S. Role of the pro-survival molecule Bfl-1 in melanoma. Int J. Biochem Cell Biol. 2015; 59: 94–102. DOI: 10.1016/j.biocel.2014.11.015.
  34. Niero E.L., Rocha-Sales B., Lauand C., Cortez B.A., de Souza M.M., Rezende-Teixeira P., Urabayashi M.S., Martens A.A., Neves J.H., Machado-Santelli G.M. The multiple facets of drug resistance: one history, different approaches. J. Exp. Clin. Cancer Res. 2014; 33 (1): 37. DOI: 10.1186/1756-9966-33-37.
  35. Trisciuoglio D., Del Bufalo D. New insights into the roles of antiapoptotic members of the Bcl-2 family in melanoma progression and therapy. Drug Discov Today. 2021; 26 (5): 1126–35. DOI: 10.1016/j.drudis.2021.01.027.
  36. Bukowski K., Kciuk M., Kontek R. Mechanisms of Multidrug Resistance in Cancer Chemotherapy. Int. J. Mol. Sci. 2020; 21: 3233. DOI: 10.3390/ijms21093233.
  37. McNeil E.M., Astell K.R., Ritchie A.M., Shave S., Houston D.R., Bakrania P., Jones H.M., Khurana P., Wallace C., Chapman T., Wear M.A., Walkinshaw M.D., Saxty B., Melton D.W. Inhibition of the ERCC1-XPF structure-specific endonuclease to overcome cancer chemoresistance. DNA Repair (Amst). 2015; 31: 19–28. DOI: 10.1016/j.dnarep.2015.04.002.
  38. Arora S., Kothandapani A., Tillison K., Kalman-Maltese V., Patrick S.M. Downregulation of XPF-ERCC1 enhances cisplatin efficacy in cancer cells. DNA Repair (Amst). 2010; 9 (7): 745–53. DOI: 10.1016/j.dnarep.2010.03.010.
  39. Elmenoufy A.H., Gentile F., Jay D., Karimi-Busheri F., Yang X., Soueidan O.M., Weilbeer C., Mani R.S., Barakat K.H., Tuszynski J.A., Weinfeld M., West F.G. Targeting DNA Repair in Tumor Cells via Inhibition of ERCC1-XPF. J. Med. Chem. 2019; 62 (17): 7684–96. DOI: 10.1021/acs.jmedchem.9b00326.
  40. Yu W., Zhang L., Wei Q., Shao A. O6-Methylguanine-DNA Methyltransferase (MGMT): Challenges and New Opportunities in Glioma Chemotherapy. Front Oncol. 2020; 9: 1547. DOI: 10.3389/fonc.2019.01547.
  41. Jiang X., Li W., Li X., Bai H., Zhang Z. Current status and future prospects of PARP inhibitor clinical trials in ovarian cancer. Cancer Manag Res. 2019; 11: 4371–90. DOI: 10.2147/CMAR.S200524.
  42. Harrision D., Gravells P., Thompson R., Bryant H.E. Poly(ADP-Ribose) Glycohydrolase (PARG) vs. Poly(ADP-Ribose) Polymerase (PARP) – Function in Genome Maintenance and Relevance of Inhibitors for Anti-cancer Therapy. Front Mol Biosci. 2020; 7: 191. DOI: 10.3389/fmolb.2020.00191.
  43. 43. Zhou Y., Tozzi F., Chen J., Fan F., Xia L., Wang J., Gao G., Zhang A., Xia X., Brasher H., Widger W., Ellis L.M., Weihua Z. Intracellular ATP levels are a pivotal determinant of chemoresistance in colon cancer cells. Cancer Res. 2012; 72 (1): 304–14. DOI: 10.1158/0008-5472.CAN-11-1674.
  44. Cao Y. Adipocyte and lipid metabolism in cancer drug resistance. J Clin Invest. 2019; 129 (8): 3006–17. DOI: 10.1172/JCI127201.
  45. Kopecka J., Trouillas P., Gašparović A.Č., Gazzano E., Assaraf Y.G., Riganti C. Phospholipids and cholesterol: Inducers of cancer multidrug resistance and therapeutic targets. Drug Resist Updat. 2020; 49: 100670. DOI: 10.1016/j.drup.2019.100670.
  46. Garner I.M., Brown R. Is There a Role for Epigenetic Therapies in Modulating DNA Damage Repair Pathways to Enhance Chemotherapy and Overcome Drug Resistance? Cancers (Basel). 2022; 14 (6): 1533. DOI: 10.3390/cancers14061533
  47. Sumarpo A., Ito K., Saiki Y., Ishizawa K., Wang R., Chen N., Sunamura M., Horii A. Genetic and epigenetic aberrations of ABCB1 synergistically boost the acquisition of taxane resistance in esophageal squamous cancer cells. Biochem Biophys Res Commun. 2020; 526 (3): 586–91. DOI: 10.1016/j.bbrc.2020.03.114.
  48. Gupta A., Gomes F., Lorigan P. The role for chemotherapy in the modern management of melanoma. Melanoma Manag. 2017; 4 (2): 125–36. DOI: 10.2217/mmt-2017-0003.
  49. Arun G., Diermeier S.D., Spector D.L. Therapeutic Targeting of Long Non-Coding RNAs in Cancer. Trends Mol. Med. 2018; 24: 257–77. DOI: 10.1016/j.molmed.2018.01.001
  50. Hou S., Guo M., Xi H., Zhang L., Zhao A., Hou H., Fang W. MicroRNA-153-3p sensitizes melanoma cells to dacarbazine by suppressing ATG5-mediated autophagy and apoptosis. Transl Cancer Res. 2020; 9 (9): 5626–36. DOI: 10.21037/tcr-20-2660.
  51. Zhan Y., Li Y., Guan B., Wang Z., Peng D., Chen Z., He A., He S., Gong Y., Li X., et al. Long non-coding RNA HNF1A-AS1 promotes proliferation and suppresses apoptosis of bladder cancer cells through upregulating Bcl-2. Oncotarget. 2017; 8: 76656–65. DOI: 10.18632/oncotarget.2079
  52. O’Brien J., Hayder H., Zayed Y., Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front. Endocrinol. 2018; 9: 402. DOI: 10.3389/fendo.2018.004
  53. Bhatla T., Wang J., Morrison D.J., Raetz E.A., Burke M.J., Brown P., Carroll W.L. Epigenetic reprogramming reverses the relapse-specific gene expression signature and restores chemosensitivity in childhood B-lymphoblastic leukemia. Blood. 2012;119:5201–5210. DOI: 10.1182/blood-2012-01-401687