Молекулярные механизмы нейровоспаления и депривации сна при развитии возрастассоциированной когнитивной дисфункции

DOI: https://doi.org/10.29296/24999490-2023-03-02

К.Е. Назарова, Р.А. Костромина, Н.А. Малиновская, Е.Д. Хилажева, Ю.К. Комлева
ФГБОУ ВО «Красноярский государственный медицинский университет
им. профессора В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации,
кафедра «Биологической химии с курсами медицинской, фармацевтической и токсикологической химии»,
Российская Федерация, 660022, Красноярск, ул. Партизана Железняка, 1 «З»

Введение. Провоспалительные цитокины, образующиеся у пожилых лиц в повышенных концентрациях, значительно нарушают нейрогенез в зубчатой извилине гиппокампа, долговременную потенциацию, изменяют морфологию и функцию нейронов, усиливают апоптоз. Это приводит к ухудшению эпизодической памяти, исполнительных функций и пространственного обучения, а также к нейродегенерации. Половина пожилых людей страдает от нарушений сна. Бессонница вызывает активацию микроглии и увеличивает круглосуточную экспрессию провоспалительных цитокинов, что усиливает уже существующее воспаление, которое, в свою очередь, усугубляет бессонницу. Цель. Систематизация научных данных о роли нарушений сна в развитии нейровоспаления у пожилых, других причинах и последствиях этого состояния, а также о методах коррекции бессонницы в пожилом возрасте. Материал и методы. Проведен анализ основных зарубежных и отечественных источников по базам данных PubMed/Medline, e-Library.ru. Заключение. Старение связано с неизбежным накоплением клеточных повреждений и истощением эндогенных механизмов для устранения DAMPs. Их избыточное количество чрезмерно активирует NLRP3 инфламмасому, экспрессирующую провоспалительные цитокины. Хроническая депривация сна при старении возникает из-за нарушений во взаимодействии гомеостатических механизмов сна с параметрами циркадных часов, что приводит к повышению уровня провоспалительных цитокинов. Повышенный уровень нейровоспаления нарушает выживаемость и пролиферацию новых нейронов, их правильную интеграцию в ранее существовавшие нейронные сети гиппокампа, кодирующие пространственную информацию. Также уменьшению размера гиппокампа при нарушениях сна способствует усиленный апоптоз, нарушения глиогенеза, дендритная атрофия и потеря синапсов. Снижение уровня нейрогенеза гиппокампа коррелирует с развитием дефицита памяти и обучения, при этом сильнее страдают более сложные функции – разделение шаблонов и когнитивная гибкость. Для коррекции негативных последствий хронического нейровоспаления обсуждается использование поведенческих стратегий для улучшения качества сна у пожилых (соблюдение гигиены сна, умеренные физические нагрузки и социальная активность).
Ключевые слова: 
нейровоспаление, старение, нарушения сна при старении, NLRP3-инфламмасома, провоспалительные цитокины, нейрогенез
Для цитирования: 
Назарова К.Е., Костромина Р.А., Малиновская Н.А., Хилажева Е.Д., Комлева Ю.К. Молекулярные механизмы нейровоспаления и депривации сна при развитии возрастассоциированной когнитивной дисфункции . Молекулярная медицина, 2023; (3): 12-21https://doi.org/10.29296/24999490-2023-03-02

Список литературы: 
  1. Rudnicka E., Napierała P., Podfigurna A., Męczekalski B., Smolarczyk R., Grymowicz M. The World Health Organization (WHO) approach to healthy ageing. Maturitas. 2020; 139: 6–11. DOI: https://doi.org/10.1016/j.maturitas.2020.05.018
  2. Komleva Y., Chernykh A., Lopatina O., Gorina Y., Lokteva I., Salmina A., Gollasch M. Inflamm-Aging and Brain Insulin Resistance: New Insights and Role of Life-style Strategies on Cognitive and Social Determinants in Aging and Neurodegeneration. Front Neurosci. 2020; 14: 618395. DOI: https://doi.org/10.3389/fnins.2020.618395
  3. Harada C.N., Natelson Love M.C., Triebel K.L. Normal Cognitive Aging. Clin Geriatr Med. 2013; 29 (4): 737–52. DOI: https://doi.org/10.1016/j.cger.2013.07.002
  4. Simen A.A., Bordner K.A., Martin M.P., Moy L.A., Barry L.C. Cognitive Dysfunction with Aging and the Role of Inflammation. Ther Adv Chronic Dis. 2011; 2 (3): 175–95. DOI: https://doi.org/10.1177/2040622311399145
  5. Reid K.J., Baron K.G., Lu B., Naylor E., Wolfe L., Zee P.C. Aerobic exercise improves self-reported sleep and quality of life in older adults with insomnia. Sleep Med. 2010; 11 (9): 934–40. DOI: https://doi.org/10.1016/j.sleep.2010.04.014
  6. Foley D.J., Monjan A.A., Brown S.L., Simonsick E.M., Wallace R.B., Blazer D.G. Sleep complaints among elderly persons: an epidemiologic study of three communities. Sleep. 1995; 18 (6): 425–32. DOI: https://doi.org/10.1093/sleep/18.6.425
  7. Ingiosi A.M., Opp M.R., Krueger J.M. Sleep and immune function: glial contributions and consequences of aging. Curr Opin Neurobiol. 2013; 23 (5): 806–11. DOI: https://doi.org/10.1016/j.conb.2013.02.003
  8. Choudhury M.E., Miyanishi K., Takeda H., Tanaka J. Microglia and the Aging Brain: Are Geriatric Microglia Linked to Poor Sleep Quality? Int J. Mol. Sci. 2021; 22 (15): 7824. DOI: https://doi.org/10.3390/ijms22157824
  9. Hurtado-Alvarado G., Pavón L., Castillo-Garcia S.A., Hernández M.E., Dominguez-Salazar E., Velázquez-Moctezuma J., Gómez-González B. Sleep Loss as a Factor to Induce Cellular and Molecular Inflammatory Variations. Clin Dev Immunol. 2013; 2013: 801341. DOI: https://doi.org/10.1155/2013/801341
  10. Кувачева Н.В., Моргун А.В., Хилажева Е.Д., Малиновская Н.А., Горина Я.В., Пожиленкова Е.А., Фролова О.В., Труфанова Л.В., Мартынова Г.П., Салмина А.Б. Формирование инфламмасом: новые механизмы регуляции межклеточных взаимодействий и секреторной активности клеток. Сибирское Медицинское Обозрение. 2013; 5: 3–10. [Kuvacheva N.V., Morgun A.V., Hilazheva E.D., Malinovskaja N.A., Gorina Ja.V., Pozhilenkova E.A., Frolova O.V., Trufanova L.V., Martynova G.P., Salmina A.B. Inflammasomes forming: new mechanisms of intercellular interactions regulation and secretory activity of the cells. Sibirskoe Medicinskoe Obozrenie. 2013; 5: 3–10 (in Russian)]
  11. Kelley N., Jeltema D., Duan Y., He Y. The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J. Mol. Sci. 2019; 20 (13): 3328. DOI: https://doi.org/10.3390/ijms20133328
  12. Zielinski M.R, Gibbons A.J. Neuroinflammation, Sleep, and Circadian Rhythms. Front Cell Infect Microbiol. 2022; 12: 853096. DOI: https://doi.org/10.3389/fcimb.2022.853096
  13. Guo H., Callaway J.B., Ting J.P. Inflammasomes: Mechanism of Action, Role in Disease, and Therapeutics. Nat Med. 2015; 21 (7): 677–87. DOI: https://doi.org/10.1038/nm.3893
  14. Ransohoff R.M, Brown M.A. Innate immunity in the central nervous system. J Clin Invest. 2012; 122 (4): 1164–71. DOI: https://doi.org/10.1172/JCI58644
  15. Goldberg E.L., Dixit V.D. Drivers of age-related inflammation and strategies for healthspan extension. Immunol Rev. 2015; 265 (1): 63–74. DOI: https://doi.org/10.1111/imr.12295
  16. Deleidi M., Jäggle M., Rubino G. Immune aging, dysmetabolism, and inflammation in neurological diseases. Front Neurosci. 2015; 9: 172. DOI: https://doi.org/10.3389/fnins.2015.00172
  17. Di Benedetto S., Müller L., Wenger E., Düzel S., Pawelec G. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci Biobehav Rev. 2017; 75: 114–28. DOI: https://doi.org/10.1016/j.neubiorev.2017.01.044
  18. Игрункова А.В., Валиева Я.М., Калиниченко А.М., Курков А.В., Попова К.Ю., Шестаков Д.Ю., Заборова В.А. Клеточное старение: молекулярный и морфологический аспекты. Молекулярная медицина. 2022; 20 (4): 16–21. DOI: https://doi.org/10.29296/24999490-2022-04-03 [Igrunkova A.V., Valieva Ja.M., Kalinichenko A.M., Kurkov A.V., Popova K.Ju., Shestakov D.Ju., Zaborova V.A. Cellular senescence: molecular biology and morphology. Molekulyarnaya meditsina. 2022; 20 (4): 16–21 (in Russian). DOI: https://doi.org/10.29296/24999490-2022-04-03]
  19. Youm Y.H., Grant R.W., McCabe L.R., Albarado D.C., Nguyen K.Y., Ravussin A., Pistell P., Newman S., Carter R., Laque A., Münzberg H., Rosen C.J., Ingram D.K., Salbaum J.M., Dixit V.D. Canonical Nlrp3 inflammasome links systemic low-grade inflammation to functional decline in aging. Cell Metab. 2013; 18 (4): 519–32. DOI: https://doi.org/10.1016/j.cmet.2013.09.010
  20. Brunt V.E., LaRocca T.J., Bazzoni A.E., Sapinsley Z.J., Miyamoto-Ditmon J., Gioscia-Ryan R.A., Neilson A.P., Link C.D., Seals D.R. The gut microbiome–derived metabolite trimethylamine N-oxide modulates neuroinflammation and cognitive function with aging. GeroScience. 2020; 43 (1): 377–94. DOI: https://doi.org/10.1007/s11357-020-00257-2
  21. Norden D.M., Muccigrosso M.M., Godbout J.P. Microglial priming and enhanced reactivity to secondary insult in aging, and traumatic CNS injury, and neurodegenerative disease. Neuropharmacology. 2015; 96 (Pt A): 29–41. DOI: https://doi.org/10.1016/j.neuropharm.2014.10.028
  22. Imeri L., Opp M.R. How (and why) the immune system makes us sleep. Nat Rev Neurosci. 2009; 10 (3): 199–210. DOI: https://doi.org/10.1038/nrn2576
  23. Irwin M.R., Opp M.R. Sleep Health: Reciprocal Regulation of Sleep and Innate Immunity. Neuropsychopharmacology. 2017; 42 (1): 129–55. DOI: https://doi.org/10.1038/npp.2016.148
  24. Lee H.G., Won S.M., Gwag B.J., Lee Y.B. Microglial P2X7 receptor expression is accompanied by neuronal damage in the cerebral cortex of the APPswe/PS1dE9 mouse model of Alzheimer’s disease. Exp Mol. Med. 2011; 43 (1): 7–14. DOI: https://doi.org/10.3858/emm.2011.43.1.001
  25. Mander B.A., Winer J.R., Walker M.P. Sleep and Human Aging. Neuron. 2017; 94 (1): 19–36. DOI: https://doi.org/10.1016/j.neuron.2017.02.004
  26. Leise T.L., Harrington M.E., Molyneux P.C., Song I., Queenan H., Zimmerman E., Lall G.S., Biello S.M. Voluntary exercise can strengthen the circadian system in aged mice. Age (Dordr). 2013; 35 (6): 2137–52. DOI: https://doi.org/10.1007/s11357-012-9502-y
  27. Krueger J.M., Nguyen J.T., Dykstra-Aiello C.J., Taishi P. Local sleep. Sleep Med Rev. 2019; 43: 14–21. DOI: https://doi.org/10.1016/j.smrv.2018.10.001
  28. Fonken L.K., Kitt M.M., Gaudet A.D., Barrientos R.M., Watkins L.R., Maier S.F. Diminished circadian rhythms in hippocampal microglia may contribute to age-related neuroinflammatory sensitization. Neurobiol Aging. 2016; 47: 102–12. DOI: https://doi.org/10.1016/j.neurobiolaging.2016.07.019
  29. Zamore Z., Veasey S.C. Neural consequences of chronic sleep disruption. Trends Neurosci. 2022; 45 (9): 678–91. DOI: https://doi.org/10.1016/j.tins.2022.05.007
  30. Cardinali D.P., Brown G.M., Pandi-Perumal S.R. Melatonin’s Benefits and Risks as a Therapy for Sleep Disturbances in the Elderly: Current Insights. Nat Sci Sleep. 2022; 14: 1843–55. DOI: https://doi.org/10.2147/NSS.S380465
  31. Faraut B., Boudjeltia K.Z., Vanhamme L., Kerkhofs M. Immune, inflammatory and cardiovascular consequences of sleep restriction and recovery. Sleep Med Rev. 2012; 16 (2): 137–49. DOI: https://doi.org/10.1016/j.smrv.2011.05.001
  32. Jewett K.A., Krueger J.M. Humoral sleep regulation; interleukin-1 and tumor necrosis factor. Vitam Horm. 2012; 89: 241–57. DOI: https://doi.org/10.1016/B978-0-12-394623-2.00013-5
  33. Kapsimalis F., Basta M., Varouchakis G., Gourgoulianis K., Vgontzas A., Kryger M. Cytokines and pathological sleep. Sleep Med. 2008; 9 (6): 603–14. DOI: https://doi.org/10.1016/j.sleep.2007.08.019
  34. Friedman E.M., Hayney M.S., Love G.D., Urry H.L., Rosenkranz M.A., Davidson R.J., Singer B.H., Ryff C.D. Social relationships, sleep quality, and interleukin-6 in aging women. Proc Natl Acad Sci USA. 2005; 102 (51): 18757–62. DOI: https://doi.org/10.1073/pnas.0509281102
  35. Zhu B., Dong Y., Xu Z., Gompf H.S., Ward S.A., Xue Z., Miao C., Zhang Y., Chamberlin N.L., Xie Z. Sleep disturbance induces neuroinflammation and impairment of learning and memory. Neurobiol Dis. 2012; 48 (3): 348–55. DOI: https://doi.org/10.1016/j.nbd.2012.06.022
  36. Rockstrom M., Chen L., Taishi P., Nguyen J.T., Gibbons C.M., Veasey S., Krueger J.M. Tumor Necrosis Factor Alpha in Sleep Regulation. Sleep Med Rev. 2018; 40: 69–78. DOI: https://doi.org/10.1016/j.smrv.2017.10.005
  37. Garofalo S., Picard K., Limatola C., Nadjar A., Pascual O., Tremblay MÈ. Role of Glia in the Regulation of Sleep in Health and Disease. Compr Physiol. 2020; 10 (2): 687–712. DOI: https://doi.org/10.1002/cphy.c190022
  38. Obal F., Krueger J.M. Biochemical regulation of non-rapid-eye-movement sleep. Front Biosci. 2003; 8: 520–50. DOI: https://doi.org/10.2741/1033
  39. Xia M., Li X., Yang L., Ren J., Sun G., Qi S., Verkhratsky A., Li B. The ameliorative effect of fluoxetine on neuroinflammation induced by sleep deprivation. J. Neurochem. 2017; 146: 63–75. DOI: https://doi.org/10.1111/jnc.14272
  40. Bellesi M., de Vivo L., Chini M., Gilli F., Tononi G., Cirelli C. Sleep Loss Promotes Astrocytic Phagocytosis and Microglial Activation in Mouse Cerebral Cortex. J. Neurosci. 2017; 37 (21): 5263–73. DOI: https://doi.org/10.1523/JNEUROSCI.3981-16.2017
  41. Marshall L., Born J. Brain-immune interactions in sleep. Int Rev Neurobiol. 2002; 52: 93–131. DOI: https://doi.org/10.1016/s0074-7742(02)52007-9
  42. Mullington J.M., Simpson N.S., Meier-Ewert H.K., Haack M. Sleep Loss and Inflammation. Best Pract Res Clin Endocrinol Metab. 2010; 24 (5): 775–84. DOI: https://doi.org/10.1016/j.beem.2010.08.014
  43. Reutrakul S., Van Cauter E. Sleep influences on obesity, insulin resistance, and risk of type 2 diabetes. Metabolism. 2018; 84: 56–66. DOI: https://doi.org/10.1016/j.metabol.2018.02.010
  44. Drapeau E., Nora Abrous D. Stem Cell Review Series: Role of neurogenesis in age-related memory disorders. Aging Cell. 2008; 7 (4): 569–89. DOI: https://doi.org/10.1111/j.1474-9726.2008.00369.x
  45. Isaev N.K., Stelmashook E.V., Genrikhs E.E. Neurogenesis and brain aging. Reviews in the Neurosciences. 2019; 30 (6): 573–80. DOI: https://doi.org/10.1515/revneuro-2018-0084
  46. Leeman D.S., Hebestreit K., Ruetz T., Webb A.E., McKay A., Pollina E.A., Dulken B.W., Zhao X., Yeo R.W., Ho T.T., Mahmoudi S., Devarajan K., Passegué E., Rando T.A., Frydman J., Brunet A. Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science. 2018; 359 (6381): 1277–83. DOI: https://doi.org/10.1126/science.aag3048
  47. Calabrese F., Rossetti A.C., Racagni G., Gass P., Riva M.A., Molteni R. Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci. 2014; 8: 430. DOI: https://doi.org/10.3389/fncel.2014.00430
  48. Gonçalves J.T., Schafer S.T., Gage F.H. Adult Neurogenesis in the Hippocampus: From Stem Cells to Behavior. Cell. 2016; 167 (4): 897–914. DOI: https://doi.org/10.1016/j.cell.2016.10.021
  49. Kreutzmann J.C., Havekes R., Abel T., Meerlo P. Sleep deprivation and hippocampal vulnerability: changes in neuronal plasticity, neurogenesis and cognitive function. Neuroscience. 2015; 309: 173–90. DOI: https://doi.org/10.1016/j.neuroscience.2015.04.053
  50. Bah T.M., Goodman J., Iliff J.J. Sleep as a Therapeutic Target in the Aging Brain. Neurotherapeutics. 2019; 16 (3): 554–68. DOI: https://doi.org/10.1007/s13311-019-00769-6