Новые длинные некодирующие РНК в онкогенезе рака легкого

DOI: https://doi.org/10.29296/24999490-2023-05-01

П.А. Подлесная, О.В. Ковалева, А.А. Петренко, Н.Е. Кушлинский, А.Н. Грачев
ФГБУ «Национальный медицинский исследовательский
центр онкологии им. Н.Н. Блохина» Минздрава России,
Российская Федерация, 115522, Москва, Каширское шоссе, 24

Настоящий обзор посвящен обобщению имеющихся данных об экспрессии длинных некодирубщих РНК (днРНК) в клетках и тканях рака легкого (РЛ), их роли в онкогенезе, ассоциации с клинико-морфологическими характеристиками и прогнозом заболевания. Целью данного исследования является поиск и описание новых днРНК, вовлеченных в механизмы прогрессии РЛ. Материал и методы. Проведен анализ научной литературы по базам данных PubMed, Medline, РИНЦ/elibrary за последние 5 лет. Результаты. Длинные некодирующие РНК являются перспективным инструментом для диагностики и лечения онкологических заболеваний, в том числе РЛ. На сегодняшний день описано большое количество днРНК ассоциированных с раком легкого и/или вовлеченных в различные механизмы прогрессии заболевания. Однако данные о роли каждой из них фрагментарны и требуются дальнейшие комплексные исследования функций выявленных днРНК в патогенезе РЛ.
Ключевые слова: 
длинные некодирующие РНК, днРНК, опухоль, рак легкого, канцерогенез, резистентность, противоопухолевый иммунитет
Для цитирования: 
Подлесная П.А., Ковалева О.В., Петренко А.А., Кушлинский Н.Е., Грачев А.Н. Новые длинные некодирующие РНК в онкогенезе рака легкого. Молекулярная медицина, 2023; (5): 3-11https://doi.org/10.29296/24999490-2023-05-01

Список литературы: 
  1. Ковалева О.В., Подлесная П.А., Васильева М.В., Копнин П.Б., Балкин А.С., Плотников А.О., Кушлинский Н.Е., Грачев А.Н. Транскриптом клеток рака легкого, устойчивых к цитотоксической активности макрофагов. Доклады Российской академии наук. Науки о жизни. 2022; 507 (1): 542–8. https://doi.org/10.1134/S160767292205009X.
  2. [Kovaleva O.V., Podlesnaya P.A., Vasileva M.V., Kopnin P.B., Balkin A.S., Plotnikov A.O., Kushlinskii N.E., Gratchev A.N. Transcriptome of lung cancer cells resistant to the cytotoxic activity of macrophages. Doklady Biological Sciences. 2022; 507 (1): 542–8. https://doi.org/10.1134/S160767292205009X (in Russian)]
  3. Jiang L., Li Z., Wang R. Long non coding RNAs in lung cancer: Regulation patterns, biologic function and diagnosis implications (Review). Int J. Oncol. 2019; 55 (3): 585–96. https://doi.org/10.3892/ijo.2019.4850.
  4. Esfandi F., Taheri M., Omrani M.D., Shadmehr M.B., Arsang-Jang S., Shams R., Ghafouri-Fard S. Expression of long non-coding RNAs (lncRNAs) has been dysregulated in non-small cell lung cancer tissues. BMC Cancer. 2019; 19 (1): 222. https://doi.org/10.1186/s12885-019-5435-5.
  5. Fatica A., Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014; 15 (1): 7–21. https://doi.org/ 10.1038/nrg3606.
  6. Brockdorff N., Ashworth A., Kay G.F., McCabe V.M., Norris D.P., Cooper P.J., Swift S., Rastan S. The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell. 1992; 71 (3): 515–26. https://doi.org/10.1016/0092-8674(92)90519-i.
  7. Yang J., Qi M., Fei X., Wang X., Wang K. Long non-coding RNA XIST: a novel oncogene in multiple cancers. Mol Med. 2021; 27 (1): 159. https://doi.org/10.1186/s10020-021-00421-0.
  8. Fang J., Sun C.C., Gong C. Long noncoding RNA XIST acts as an oncogene in non-small cell lung cancer by epigenetically repressing KLF2 expression. Biochem Biophys Res Commun. 2016; 478 (2): 811–7. https://doi.org/10.1016/j.bbrc.2016.08.030.
  9. Nachemson A.L. Fusion for low back pain and sciatica. Acta Orthop Scand. 1985; 56 (4): 285–6. https://doi.org/10.3109/17453678508993015.
  10. Sun C.C., Li S.J., Li G., Hua R.X., Zhou X.H., Li D.J. Long Intergenic Noncoding RNA 00511 Acts as an Oncogene in Non-small-cell Lung Cancer by Binding to EZH2 and Suppressing p57. Mol Ther Nucleic Acids. 2016; 5 (11): e385. https://doi.org/10.1038/mtna.2016.94.
  11. Ji P., Diederichs S., Wang W., Böing S., Metzger R., Schneider P.M., Tidow N., Brandt B., Buerger H., Bulk E., Thomas M., Berdel W.E., Serve H., Müller-Tidow C. MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene. 2003; 22 (39): 8031–41. https://doi.org/10.1038/sj.onc.1206928.
  12. Li J., Wang J., Chen Y., Li S., Jin M., Wang H., Chen Z., Yu W. LncRNA MALAT1 exerts oncogenic functions in lung adenocarcinoma by targeting miR-204. Am. J. Cancer Res. 2016; 6 (5): 1099–107.
  13. Chao C., Tang R., Zhao J., Di D., Qian Y., Wang B. Oncogenic roles and related mechanisms of the long non-coding RNA MINCR in human cancers. Front Cell Dev Biol. 2023; 11: 1087337. https://doi.org/10.3389/fcell.2023.1087337.
  14. Chen S., Gu T., Lu Z., Qiu L., Xiao G., Zhu X., Li F., Yu H., Li G., Liu H. Roles of MYC-targeting long non-coding RNA MINCR in cell cycle regulation and apoptosis in non-small cell lung Cancer. Respir Res. 2019; 20 (1): 202. https://doi.org/10.1186/s12931-019-1174-z.
  15. Wang J., Ding M., Zhu H., Cao Y., Zhao W. Up-regulation of long noncoding RNA MINCR promotes non-small cell of lung cancer growth by negatively regulating miR-126/SLC7A5 axis. Biochem Biophys Res Commun. 2019; 508 (3): 780–4. https://doi.org/10.1016/j.bbrc.2018.11.162.
  16. Zhao Q.S., Li L., Zhang L., Meng X.W., Li L.L., Ge X.F., Li Z.P. Over-expression of lncRNA SBF2-AS1 is associated with advanced tumor progression and poor prognosis in patients with non-small cell lung cancer. Eur Rev Med Pharmacol Sci. 2016; 20 (14): 3031–4.
  17. Hussain S.A., Venkatesh T. YBX1/lncRNA SBF2-AS1 interaction regulates proliferation and tamoxifen sensitivity via PI3K/AKT/MTOR signaling in breast cancer cells. Mol. Biol. Rep. 2023; 50 (4): 3413–28. https://doi.org/10.1007/s11033-023-08308-5.
  18. Liu C., Ren L., Deng J., Wang S. LncRNA TP73-AS1 promoted the progression of lung adenocarcinoma via PI3K/AKT pathway. Biosci Rep. 2019; 39 (1): BSR20180999. https://doi.org/10.1042/BSR20180999.
  19. Zhang Y., Xiang C., Wang Y., Duan Y., Liu C., Jin Y., Zhang Y. lncRNA LINC00152 knockdown had effects to suppress biological activity of lung cancer via EGFR/PI3K/AKT pathway. Biomed Pharmacother. 2017; 94: 644–51. https://doi.org/10.1016/j.biopha.2017.07.120.
  20. Xu W., Chen L., Liu J., Zhang Z., Wang R., Zhang Q., Li H., Xiang J., Fang L., Xu P., Li Z. LINC00152 induced by TGF-β promotes metastasis via HuR in lung adenocarcinoma. Cell Death Dis. 2022; 13 (9): 772. https://doi.org/10.1038/s41419-022-05164-2.
  21. Cui Y., Zhang F., Zhu C., Geng L., Tian T., Liu H. Upregulated lncRNA SNHG1 contributes to progression of non-small cell lung cancer through inhibition of miR-101-3p and activation of Wnt/β-catenin signaling pathway. Oncotarget. 2017; 8 (11): 17785–94. https://doi.org/10.18632/oncotarget.14854.
  22. He R., Zhang F.H., Shen N. LncRNA FEZF1-AS1 enhances epithelial-mesenchymal transition (EMT) through suppressing E-cadherin and regulating WNT pathway in non-small cell lung cancer (NSCLC). Biomed Pharmacother. 2017; 95: 331–8. https://doi.org/10.1016/j.biopha.2017.08.057.
  23. Qian H., Chen L., Huang J., Wang X., Ma S., Cui F., Luo L., Ling L., Luo K., Zheng G. The lncRNA MIR4435-2HG promotes lung cancer progression by activating β-catenin signalling. J. Mol. Med (Berl). 2018; 96 (8): 753–64. https://doi.org/10.1007/s00109-018-1654-5.
  24. Xu Y.H., Tu J.R., Zhao T.T., Xie S.G., Tang S.B. [Corrigendum] Overexpression of lncRNA EGFR‑AS1 is associated with a poor prognosis and promotes chemotherapy resistance in non‑small cell lung cancer. Int J. Oncol. 2019; 55 (1): 340. https://doi.org/10.3892/ijo.2019.4686.
  25. Chen S., Wu H., Lv N., Wang H., Wang Y., Tang Q., Shao H., Sun C. LncRNA CCAT2 predicts poor prognosis and regulates growth and metastasis in small cell lung cancer. Biomed Pharmacother. 2016; 82: 583–8. https://doi.org/10.1016/j.biopha.2016.05.017.
  26. Zhao Z., Wang J., Wang S., Chang H., Zhang T., Qu J. LncRNA CCAT2 promotes tumorigenesis by over-expressed Pokemon in non-small cell lung cancer. Biomed Pharmacother. 2017; 87: 692–7. https://doi.org/10.1016/j.biopha.2016.12.122.
  27. Tano K., Akimitsu N. Long non-coding RNAs in cancer progression. Front Genet. 2012; 3: 219. https://doi.org/10.3389/fgene.2012.00219.
  28. Tracy K.M., Tye C.E., Page N.A., Fritz A.J., Stein J.L., Lian J.B., Stein G.S. Selective expression of long non-coding RNAs in a breast cancer cell progression model. J. Cell. Physiol. 2018; 233 (2): 1291–9. https://doi.org/10.1002/jcp.25997.
  29. Wang H., Shi Y., Chen C.H., Wen Y., Zhou Z., Yang C., Sun J., Du G., Wu J., Mao X., Liu R., Chen C. KLF5-induced lncRNA IGFL2-AS1 promotes basal-like breast cancer cell growth and survival by upregulating the expression of IGFL1. Cancer Lett. 2021; 515: 49–62. https://doi.org/10.1016/j.canlet.2021.04.016.
  30. Wang G., Liu P., Li J., Jin K., Zheng X., Xie L. Novel Prognosis and Therapeutic Response Model of Immune-Related lncRNA Pairs in Clear Cell Renal Cell Carcinoma. Vaccines (Basel). 2022; 10 (7): 1161. https://doi.org/10.3390/vaccines10071161.
  31. Lai J., Miao S., Ran L. Ferroptosis-associated lncRNA prognostic signature predicts prognosis and immune response in clear cell renal cell carcinoma. Sci Rep. 2023; 13 (1): 2114. https://doi.org/10.1038/s41598-023-29305-5.
  32. Ma Y., Liu Y., Pu Y.S., Cui M.L., Mao Z.J., Li Z.Z., He L., Wu M., Wang J.H. LncRNA IGFL2-AS1 functions as a ceRNA in regulating ARPP19 through competitive binding to miR-802 in gastric cancer. Mol. Carcinog. 2020; 59 (3): 311–22. https://doi.org/10.1002/mc.23155.
  33. Pan Y., Lu X., Shu G., Cen J., Lu J., Zhou M., Huang K., Dong J., Li J., Lin H., Song H., Xu Q., Han H., Chen Z., Chen W., Luo J., Wei J., Zhang J. Extracellular Vesicle-Mediated Transfer of LncRNA IGFL2-AS1 Confers Sunitinib Resistance in Renal Cell Carcinoma. Cancer Res. 2023; 83 (1): 103–16. https://doi.org/10.1158/0008-5472.CAN-21-3432.
  34. Lee J., Kim D.Y., Kim Y., Shin U.S., Kim K.S., Kim E.J. IGFL2-AS1, a Long Non-Coding RNA, Is Associated with Radioresistance in Colorectal Cancer. Int J. Mol. Sci. 2023; 24 (2): 978. https://doi.org/10.3390/ijms24020978.
  35. Cheng B., Xie M., Zhou Y., Li T., Liu W., Yu W., Jia M., Yu S., Chen L., Dai R., Wang R. Vascular mimicry induced by m6A mediated IGFL2-AS1/AR axis contributes to pazopanib resistance in clear cell renal cell carcinoma. Cell Death Discov. 2023; 9 (1): 121. https://doi.org/10.1038/s41420-023-01423-z.
  36. Cheng G., Liu D., Liang H., Yang H., Chen K., Zhang X. A cluster of long non-coding RNAs exhibit diagnostic and prognostic values in renal cell carcinoma. Aging (Albany NY). 2019; 11 (21): 9597–615. https://doi.org/10.18632/aging.102407.
  37. 36. Cen X., Huang Y., Lu Z., Shao W., Zhuo C., Bao C., Feng S., Wei C., Tang X., Cen L., Guo W., Tian X., Tang Q., Huang X. LncRNA IGFL2-AS1 Promotes the Proliferation, Migration, and Invasion of Colon Cancer Cells and is Associated with Patient Prognosis. Cancer Manag Res. 2021; 13: 5957–68. https://doi.org/10.2147/CMAR.S313775.
  38. Servaas N.H., Mariotti B., van der Kroef M., Wichers C.G.K., Pandit A., Bazzoni F., Radstake T.R.D.J., Rossato M. Characterization of Long Non-Coding RNAs in Systemic Sclerosis Monocytes: A Potential Role for PSMB8-AS1 in Altered Cytokine Secretion. Int J. Mol. Sci. 2021; 22 (9): 4365. https://doi.org/10.3390/ijms22094365.
  39. Muntyanu A., Le M., Ridha Z., O’Brien E., Litvinov I.V., Lefrançois P., Netchiporouk E. Novel role of long non-coding RNAs in autoimmune cutaneous disease. J. Cell. Commun Signal. 2022; 16 (4): 487–504. https://doi.org/10.1007/s12079-021-00639-x.
  40. Wu J., Deng L.J., Xia Y.R., Leng R.X., Fan Y.G., Pan H.F., Ye D.Q. Involvement of N6-methyladenosine modifications of long noncoding RNAs in systemic lupus erythematosus. Mol. Immunol. 2022; 143: 77–84. https://doi.org/10.1016/j.molimm.2022.01.006.
  41. Xu B., Zheng C. Analysis of Long Noncoding RNAs-Related Regulatory Mechanisms in Duchenne Muscular Dystrophy Using a Disease-Related lncRNA-mRNA Pathway Network. Genet Res (Camb). 2022 2022: 8548804. https://doi.org/10.1155/2022/8548804.
  42. Siangphoe U., Archer K.J. Gene Expression in HIV-Associated Neurocognitive Disorders: A Meta-Analysis. J. Acquir Immune Defic Syndr. 2015; 70 (5): 479–88. https://doi.org/10.1097/QAI.0000000000000800.
  43. More S., Zhu Z., Lin K., Huang C., Pushparaj S., Liang Y., Sathiaseelan R., Yang X., Liu L. Long non-coding RNA PSMB8-AS1 regulates influenza virus replication. RNA Biol. 2019; 16 (3): 340–53. https://doi.org/10.1080/15476286.2019.1572448.
  44. Maimaiti A., Tuerhong M., Wang Y., Aisha M., Jiang L., Wang X., Mahemuti Y., Aili Y., Feng Z., Kasimu M. An innovative prognostic model based on autophagy-related long noncoding RNA signature for low-grade glioma. Mol. Cell. Biochem. 2022; 477 (5): 1417–38. https://doi.org/10.1007/s11010-022-04368-6.
  45. Hu T., Wang F., Han G. LncRNA PSMB8-AS1 acts as ceRNA of miR-22-3p to regulate DDIT4 expression in glioblastoma. Neurosci Lett. 2020; 728: 134896. https://doi.org/10.1016/j.neulet.2020.134896.
  46. Shen G., Mao Y., Su Z., Du J., Yu Y., Xu F. PSMB8-AS1 activated by ELK1 promotes cell proliferation in glioma via regulating miR-574-5p/RAB10. Biomed Pharmacother. 2020; 122: 109658. https://doi.org/10.1016/j.biopha.2019.109658.
  47. Gao M., Wang X., Han D., Lu E., Zhang J., Zhang C., Wang L., Yang Q., Jiang Q., Wu J., Chen X., Zhao S. A Six-lncRNA Signature for Immunophenotype Prediction of Glioblastoma Multiforme. Front Genet. 2021; 11: 604655. https://doi.org/10.3389/fgene.2020.604655.
  48. Zhang H., Zhu C., He Z., Chen S., Li L., Sun C. LncRNA PSMB8-AS1 contributes to pancreatic cancer progression via modulating miR-382-3p/STAT1/PD-L1 axis. J. Exp. Clin. Cancer Res. 2020; 39 (1): 179. https://doi.org/10.1186/s13046-020-01687-8.
  49. Giulietti M., Righetti A., Principato G., Piva F. LncRNA co-expression network analysis reveals novel biomarkers for pancreatic cancer. Carcinogenesis. 2018; 39 (8): 1016–25. https://doi.org/10.1093/carcin/bgy069.
  50. Zhao F., Wang M., Zhang Y., Su R., He C., Gao X., Zan Y., Zhang S., Ma Y. Correction: lncRNA PSMB8-AS1 promotes colorectal cancer progression through sponging miR-1299 to upregulate ADAMTS5. Neoplasma. 2023; 70 (1): 177–8. https://doi.org/10.4149/neo_2022_220111N42COR.
  51. Kang Z., Dou Q., Huang T., Tu M., Zhong Y., Wang M., Li T. An angiogenesis related lncRNA signature for the prognostic prediction of patients with bladder cancer and LINC02321 promotes bladder cancer progression via the VEGFA signaling pathway. Mol. Med. Rep. 2023; 27 (2): 38. https://doi.org/10.3892/mmr.2022.12925.
  52. Mo X., Hu D., Li Y., Nai A., Ma F., Bashir S., Jia G., Xu M. A novel pyroptosis-related prognostic lncRNAs signature, tumor immune microenvironment and the associated regulation axes in bladder cancer. Front Genet. 2022; 13: 936305. https://doi.org/10.3389/fgene.2022.936305.
  53. Tong H., Li T., Gao S., Yin H., Cao H., He W. An epithelial-mesenchymal transition-related long noncoding RNA signature correlates with the prognosis and progression in patients with bladder cancer. Biosci Rep. 2021; 41 (1): BSR20203944. https://doi.org/10.1042/BSR20203944.
  54. Zhu Y., He J., Li Z., Yang W. Cuproptosis-related lncRNA signature for prognostic prediction in patients with acute myeloid leukemia. BMC Bioinformatics. 2023; 24 (1): 37. https://doi.org/10.1186/s12859-023-05148-9.
  55. Cabanski C.R., White N.M., Dang H.X., Silva-Fisher J.M., Rauck C.E., Cicka D., Maher C.A. Pan-cancer transcriptome analysis reveals long noncoding RNAs with conserved function. RNA Biol. 2015; 12 (6): 628–42. https://doi.org/10.1080/15476286.2015.1038012.
  56. White N.M., Cabanski C.R., Silva-Fisher J.M., Dang H.X., Govindan R., Maher C.A. Transcriptome sequencing reveals altered long intergenic non-coding RNAs in lung cancer. Genome Biol. 2014; 15 (8): 429. https://doi.org/10.1186/s13059-014-0429-8.
  57. Li J.Y., Luo Z.Q. LCAL1 enhances lung cancer survival via inhibiting AMPK-related antitumor functions. Mol. Cell. Biochem. 2019; 457 (1–2): 11–20. https://doi.org/10.1007/s11010-019-03507-w.
  58. Zhang Q., Wu Y., Chen J., Tan F., Mou J., Du Z., Cai Y., Wang B., Yuan C. The Regulatory Role of Both MBNL1 and MBNL1-AS1 in Several Common Cancers. Curr Pharm Des. 2022; 28 (7): 581–5. https://doi.org/10.2174/1381612827666210830110732.
  59. Zhu K., Wang Y., Liu L., Li S., Yu W. Long non-coding RNA MBNL1-AS1 regulates proliferation, migration, and invasion of cancer stem cells in colon cancer by interacting with MYL9 via sponging microRNA-412-3p. Clin Res Hepatol Gastroenterol. 2020; 44 (1): 101–14. https://doi.org/10.1016/j.clinre.2019.05.001.
  60. Wei X., Wang B., Wang Q., Yang X., Yang Y., Fang Z., Yi C., Shi L., Fan X., Tao J., Guo Y., Song D. MiR-362-5p, Which Is Regulated by Long Non-Coding RNA MBNL1-AS1, Promotes the Cell Proliferation and Tumor Growth of Bladder Cancer by Targeting QKI. Front Pharmacol. 2020; 11: 164. https://doi.org/10.3389/fphar.2020.00164.
  61. Ding X., Xu X., He X.F., Yuan Y., Chen C., Shen X.Y., Su S., Chen Z., Xu S.T., Huang Y.H. Muscleblind-like 1 antisense RNA 1 inhibits cell proliferation, invasion, and migration of prostate cancer by sponging miR-181a-5p and regulating PTEN/PI3K/AKT/mTOR signaling. Bioengineered. 2021; 12 (1): 803–14. https://doi.org/10.1080/21655979.2021.1890383
  62. Jin Y., Xu L., Zhao B., Bao W., Ye Y., Tong Y., Sun Q., Liu J. Tumour-suppressing functions of the lncRNA MBNL1-AS1/miR-889-3p/KLF9 axis in human breast cancer cells. Cell Cycle. 2022; 21 (9): 908–20. https://doi.org/10.1080/15384101.2022.2034254.
  63. Cao G., Tan B., Wei S., Shen W., Wang X., Chu Y., Rong T., Gao C. Down-regulation of MBNL1-AS1 contributes to tumorigenesis of NSCLC via sponging miR-135a-5p. Biomed Pharmacother. 2020; 125: 109856. https://doi.org/10.1016/j.biopha.2020.109856.
  64. Song G., Fang J., Shang C., Li Y., Zhu Y., Xiu Z., Sun L., Jin N., Li X. Ad-apoptin inhibits glycolysis, migration and invasion in lung cancer cells targeting AMPK/mTOR signaling pathway. Exp. Cell. Res. 2021; 409 (2): 112926. DOI: 10.1016/j.yexcr.2021.112926.
  65. Xiao L., Shi X.Y., Li Z.L., Li M., Zhang M.M., Yan S.J., Wei Z.L. Downregulation of LINC01508 contributes to cisplatin resistance in ovarian cancer via the regulation of the Hippo-YAP pathway. J. Gynecol Oncol. 2021; 32 (5): e77. https://doi.org/10.3802/jgo.2021.32.e77.
  66. Ouyang D., Su J., Huang P., Li M., Li Q., Zhao P., Chen Q., Zou Q., Feng X., Qian K., Li L., Yi W. Identification of lncRNAs via microarray analysis for predicting HER2-negative breast cancer response to neoadjuvant chemotherapy. Int J. Clin. Exp. Pathol. 2018; 11 (5): 2621–8.
  67. Han X., Cai L., Shi Y., Hua Z., Lu Y., Li D., Yang J. Integrated Analysis of Long Non-Coding RNA -mRNA Profile and Validation in Diabetic Cataract. Curr Eye Res. 2022; 47 (3): 382–90. https://doi.org/10.1080/02713683.2021.1984536.
  68. Xiao S.H., Li G.X., Quan L. Long non-coding RNA BX357664 inhibits cell proliferation and metastasis in human lung cancer. Oncol Lett. 2019; 17 (3): 2607–14. https://doi.org/10.3892/ol.2019.9886.
  69. Liu Y., Qian J., Li X., Chen W., Xu A., Zhao K., Hua Y., Huang Z., Zhang J., Liang C., Su S., Li P., Shao P., Li J., Qin C., Wang Z. Long noncoding RNA BX357664 regulates cell proliferation and epithelial-to-mesenchymal transition via inhibition of TGF-β1/p38/HSP27 signaling in renal cell carcinoma. Oncotarget. 2016; 7 (49): 81410–22. https://doi.org/.18632/oncotarget.12937.
  70. Liu F., Wang X., Liu H., Wang Y., Liu X., Hao X., Li H. LncRNA BX357664 inhibits cell proliferation and invasion and promotes cell apoptosis in human colorectal cancer cells. Oncol Lett. 2018; 15 (6): 8237–44. https://doi.org/10.3892/ol.2018.8435.
  71. Liu X., Ma J., Xu F., Li L. TINCR suppresses proliferation and invasion through regulating miR-544a/FBXW7 axis in lung cancer. Biomed Pharmacother. 2018; 99: 9–17. https://doi.org/10.1016/j.biopha.2018.01.049.
  72. Liu C., Yang Z., Deng Z., Zhou Y., Gong Q., Zhao R., Chen T. Upregulated lncRNA ADAMTS9-AS2 suppresses progression of lung cancer through inhibition of miR-223-3p and promotion of TGFBR3. IUBMB Life. 2018; 70 (6): 536–46. https://doi.org/10.1002/iub.1752.
  73. Lin Z., Huang W., Yi Y., Li D., Xie Z., Li Z., Ye M. LncRNA ADAMTS9-AS2 is a Prognostic Biomarker and Correlated with Immune Infiltrates in Lung Adenocarcinoma. Int J. Gen Med. 2021; 20 (14): 8541–55. https://doi.org/10.2147/IJGM.S340683.
  74. Miao F., Chen J., Shi M., Song Y., Chen Z., Pang L. LncRNA HAND2-AS1 inhibits non-small cell lung cancer migration, invasion and maintains cell stemness through the interactions with TGF-β1. Biosci Rep. 2019; 39 (1): BSR20181525. https://doi.org/10.1042/BSR20181525.
  75. Wu Y., Lyu H., Liu H., Shi X., Song Y., Liu B. Downregulation of the long noncoding RNA GAS5-AS1 contributes to tumor metastasis in non-small cell lung cancer. Sci Rep. 2016; 6: 31093. https://doi.org/10.1038/srep31093.