Коннексины: роль в межклеточных взаимодействиях в норме и при патологии дыхательной системы

DOI: https://doi.org/10.29296/24999490-2023-05-02

Т.С. Зубарева(1, 3), В.Е. Королева(2), А.С. Зубарева(1, 3),
Ю.С. Крылова(1, 4), Е.С. Миронова(1, 3), П.К. Яблонский(1)
1-ФГБУ «Санкт-Петербургский научно-исследовательский
институт фтизиопульмонологии» Минздрава РФ,
Российская Федерация, 191036, Санкт-Петербург, Лиговский пр-т, д. 2–4;
2-ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого»,
Российская Федерация, 195251, Санкт-Петербург, ул. Политехническая, 29;
3-АНО НИЦ «Санкт-Петербургский институт биорегуляции и геронтологии»,
Российская Федерация, 197110, Санкт-Петербург, пр. Динамо, д. 3;
4-ФГБОУ ВО «Первый Санкт-Петербургский государственный
медицинский университет им. акад. И.П. Павлова» МЗ РФ,
Российская Федерация, 197022, Санкт-Петербург, ул. Льва Толстого, д. 6–8

Актуальность. Обзор посвящен анализу современных представлений о функциональной роли коннексинов в межклеточных взаимодействиях, их участии в поддержании клеточного и тканевого гомеостаза и в патогенезе заболеваний дыхательной системы. Обсуждается возможность рассмотрения коннексинов как потенциальных мишеней для таргетной терапии. Целью исследования было рассмотреть возможные молекулярные механизмы межклеточных взаимодействий через щелевые каналы, образованные коннексинами и способы регуляции их работы. Материал и методы: анализ и систематизация научной литературы за последние 15 лет выполнен в базах данных PubMed, Scopus и Google Scholar. Результаты. Особое внимание в обзоре уделено участию коннексинов в составе щелевых контактов и полуканалов в процессах переноса через клеточную мембрану ионов кальция, молекул метаболитов, АТФ и митохондрий. Нарушения в регуляции этих процессов межклеточных взаимодействий вносит существенный вклад в патогенез многих заболеваний, в частности заболеваний дыхательной системы. Углубление понимания молекулярных механизмов работы различных коннексинов в щелевых каналах даст возможность перспективного развития терапевтических подходов с применением блокирования или стимулирования активности определенного коннексина с учетом его критических функций в реализации межклеточных взаимодействий в целом.
Ключевые слова: 
коннексин, Cx43, Cx37, коннексон, щелевой контакт, межклеточные взаимодействия, сигнальные молекулы, заболевания дыхательной системы, таргетная терапия.
Для цитирования: 
Зубарева Т.С., Королева В.Е., Зубарева А.С., Крылова Ю.С., Миронова Е.С., Яблонский П.К. Коннексины: роль в межклеточных взаимодействиях в норме и при патологии дыхательной системы. Молекулярная медицина, 2023; (5): 11-21https://doi.org/10.29296/24999490-2023-05-02

Список литературы: 
  1. Esseltine J.L., Laird D.W. Next–generation connexin and pannexin cell biology. Trends in cell biology. 2016; 26 (12): 944–55.
  2. Laird D.W. Life cycle of connexins in health and disease. Biochemical J. 2006; 394 (3): 527–43.
  3. Nielsen M.S., Axelsen L.N., Sorgen P.L., Verma V., Delmar M., Holstein-Rathlou N-H. Gap Junctions. Compr. Physiol. 2012; 2 (3): 1981–2035.
  4. Totland M.Z., Rasmussen N.L., Knudsen L.M., Leithe E. Regulation of gap junction intercellular сommunication by connexin ubiquitination: physiological and pathophysiological implications. Cellular and Molecular Life Sciences. 2020; 77: 573–91.
  5. Wang N., De Bock M., Decrock E., Bol M., Gadicherla A., Bultynck G., Leybaert L. Connexin targeting peptides as inhibitors of voltage–and intracellular Ca2+–triggered Cx43 hemichannel opening. Neuropharmacology. 2013; 75: 506–16.
  6. Iyyathurai J. Wang N., D’hondt C., Jiang J.X., Leybaert L., Bultynck G. The SH3–binding domain of Cx43 participates in loop/tail interactions critical for Cx43–hemichannel activity. Cellular and Molecular Life Sciences. 2018; 75: 2059–73.
  7. Leybaert L. Lampe P.D., Dhein S., Kwak B.R., Ferdinandy P., Beyer E.C., Laird D.W., Naus C.C., Green C.R., Schulz R. Connexins in cardiovascular and neurovascular health and disease: pharmacological implications. Pharmacological reviews. 2017; 69 (4): 396–478.
  8. Hu Z., Riquelme M.A., Gu S., Jiang J.X. Regulation of Connexin Gap Junctions and Hemichannels by Calcium and Calcium Binding Protein Calmodulin. Int. J. Mol. Sci. 2020; 21: 8194.
  9. Goodenough D.A., Paul D.L. Cold Spring Harb Perspect Biol. 2009; 1 (1): 211. DOI: 10.1101/ cshperspect.a 002576.
  10. González-Nieto D., Gómez-Hernández J.M., Larrosa B. Gutiérrez C., Muñoz M.D., Fasciani I., O’Brien J., Zappalà A., Cicirata F., Barrio L.C. Regulation of neuronal connexin-36 channels by pH. Proc. Natl. Acad. Sci. U.S.А. 2008; 105 (44): 17169–74. DOI: 10.1073/pnas.0804189105.
  11. Bao X., Reuss L., Altenberg G.A. Regulation of purified and reconstituted connexin 43 hemichannels by protein kinase C–mediated phosphorylation of Serine 368. J. of Biological Chemistry. 2004; 279 (19): 20058–66.
  12. Lampe P.D., Laird D.W. Recent advances in connexin gap junction biology. Faculty Reviews. 2022; 11 (14): 32. DOI: 10.12703/r/11-14.
  13. Salameh A. Life cycle of connexins: regulation of connexin synthesis and degradation. Adv Cardiol. 2006; 42: 57–70. DOI: 10.1159/000092562.
  14. Totland M.Z., Rasmussen N.L., Knudsen L.M., Leithe E.R. egulation of gap junction intercellular communication by connexin ubiquitination: physiological and pathophysiological implications. Cell Mol. Life Sci. 2020; 77 (4): 573–91.
  15. Hervé J.-C., Sarrouilhe D. Connexin-Made Channels as Pharmacological Targets. Current Pharmaceutical Design. 2005; 11: 1941–58.
  16. Bargiotas P., Monyer H., Schwaninger M. Hemichannels in cerebral ischemia. Curr. Mol. Med. 2009; 9 (2): 186–94.
  17. Dosch M., Gerber J., Jebbawi F., Beldi G. Mechanisms of ATP Release by Inflammatory Cells. Int. J. Mol. Sci. 2018; 19: 1222. DOI: 10.3390/ijms19041222.
  18. Dahl E., Winterhager E., Traub O., Willecke K. Expression of Gap Junction genes, Connexin 40 and Connexin 43, during fetal mouse development. Brain Struct. Funct. 1995; 191: 267–78.
  19. Swartzendruber J.A., Nicholson B.J., Murthy A.K. The The Role of Connexin 43 in Lung Disease. Life (Basel). 2020; 10 (12): 363–74.
  20. Jonson L.N., Koval M. Cross-talk between pulmonary injuiry, oxidant stress and gap junctional communication. Antioxid. Redox Signal. 2009; 11: 355–67.
  21. Nagata K., Masumoto K., Esumi G., Teshiba R., Yoshizaki K., Fukumoto S., Nonaka K., Taguchi T. Connexin 43 plays an important role in lung development. J. Pediatr. Surg. 2009; 44: 2296–301.
  22. Parthasarathi K., Ichimura Y., MonmaE., Lindert J., Issekutz A., Bhattacharya J. Connexin 43 mediates spread of Ca2+–dependent proinflammatory responses in lung capillaries. The J. of clinical investigation. 2006; 116 (8): 2193–200.
  23. Kasper M., Traub O., Reimann T., Bjermer L., Grossman H., Muller M., Wenzel K.W. Upregulatiom of gap junction protein connexin 43 in alveolar epithelial cells of rats with radiation-induced pulmonary fibrosis. Histochem. Cell Biol. 1996; 106: 419.
  24. Force A.D.T., Ranieri V.M., Rubenfeld G.D., Thompson B.T., Ferguson N.D., Cardwell E. Acute respiratory distress syndrome. Jama. 2012; 307 (23): 2526–33.
  25. Soon A.S.C., Chua J.W., Becker D.L. Connexins in endothelial barrier function–novel therapeutic targets countering vascular hyperpermeability. Thrombosis and Haemostasis. 2016; 116 (11): 852–67.
  26. Grommes J., Soehnlein O. Contribution of neutrophils to acute lung injury. Molecular medicine. 2011; 17 (3): 293–307.
  27. Gerber J., Heinrich J., Brehm R. Blood-testis barrier and sertoli cell function: lessions from SCCx43KO mice. Reproduction. 2016; 151: 15–27.
  28. Kojima T., Murata M., Go M., Spray D.C., Sawada N. Connexins induce and maintain tight junctions in epithelial cells. J. Membr. Biol. 2007; 217: 13–9.
  29. Eltzschig H.K, Eckle T., Mager A., Kuper N., Karcher C., Weissmuller T., Boengler K., Schulz R., Robson S.C., Colgan S.P. ATP release from activated neutrophils occurs via connexin 43 and modulates adenosine–dependent endothelial cell function. Circulation research. 2006; 99 (10): 1100–8.
  30. O’Donnell III J.J., Birukova A.A., Beyer E., Birukov K.G.Gap junction protein connexin43 exacerbates lung vascular permeability. PloS one. 2014; 9 (6): 100931.
  31. Kandasamy K., Escue R., Manna J., Adebiyi A., Parthasarathi K. Changes in endothelial connexin 43 expression inversely correlate with microvessel permeability and VE–cadherin expression in endotoxin–challenged lungs. Am. J. of Physiology–Lung Cellular and Molecular Physiology. 2015; 309 (6): 584–92.
  32. Zhou J., Fu Y., Liu K., Hou L., Zhang W. miR–206 regulates alveolar type II epithelial cell Cx43 expression in sepsis–induced acute lung injury. Experimental and therapeutic medicine. 2019; 18 (1): 296–304.
  33. Sarieddine M.Z.R., Scheckenbach K.E.L., Foglia B., Maass K., Garcia I., Kwak B.R., Chanson M. Connexin 43 modulates neutrophil recruitment to the lung. J. of cellular and molecular medicine. 2009; 13 (11–12): 4560–70.
  34. Vogelmeier C.F., Gerard J.C., Fernando J.M., Antonio A., Peter J.B, Bourbeau J., Celli B.R., Rongchang C., Decramer M., Fabbri L.M. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report. GOLD executive summary. American journal of respiratory and critical care medicine. 2017; 195 (5): 557–82.
  35. Haussig S., Schubert A., Mohr F-W., Dhein S. Sub–chronic nicotine exposure induces intercellular communication failure and differential down–regulation of connexins in cultured human endothelial cells. Atherosclerosis. 2008; 196 (1): 210–8.
  36. Muresan X.M., Cervellati F., Sticozzi C., Belmonte G., Chui C.H., Lampronti I., Borgatti M., Gambari R., Valacchi G. The loss of cellular junctions in epithelial lung cells induced by cigarette smoke is attenuated by corilagin. Oxidative Medicine and Cellular Longevity. 2015; 2015: 631758.
  37. Wong C.W., Christen T., Roth I., Chadjichristos C.E., Derouette J-P., Foglia B.F., Chanson M., Goodenough D.A., Kwak B.R.Connexin37 protects against atherosclerosis by regulating monocyte adhesion. Nature medicine. 2006; 12 (8): 950–4.
  38. Liao M., Chen L., Lu J., Liang G., Yao Y., Ouyang S., Yang Y., Jian Z., Guo S. Connexin 37 Regulates the Kv1. 3 pathway and promotes the development of atherosclerosis. Mediators of Inflammation. 2022; 2022: 2689918.
  39. Hammad H., Lambrecht B. N. The basic immunology of asthma. Cell. 2021; 184 (6): 1469–85.
  40. Fahy J.V., Dickey B.F. Airway mucus function and dysfunction. New England journal of medicine. 2010; 363 (23): 2233–47.
  41. Yao Y., Zeng Q-X., Deng X-Q., Tang G-N., Guo J-B., Sun Y-Q., Ru K., Rizzo A.N., Shi J-B., Fu Q-L.Connexin 43 upregulation in mouse lungs during ovalbumin – induced asthma. PLoS One. 2015; 10 (12): e0144106.
  42. Huang J.Q., Chen X.Y., Huang F., Fan J.M., Shi X.W., Ju Y.K. Effects of Connexin 43 Inhibition in an Ovalbumin–induced Mouse Model of Asthma. Iran J. Allergy Asthma Immunol. 2018; 17 (1): 29–38.
  43. Park S.J., Lee K.S., Kim S.R., Min K.H., Lee K.Y., Choe Y.H., Park S.Y., Hong S.H., Lee Y.C. Change of connexin 37 in allergen–induced airway inflammation. Experimental & Molecular Medicine. 2007; 39 (5): 629–40.
  44. Holgate S.T. Epithelium dysfanction in asthma. J. Allergy Asthma Immunol. 2018; 17: 29–38.
  45. Westphalen K., Gusarova G.A., Islam M.N., Subramanian M., Cohen T.S., Prince A.S., Bhattacharya J. Sessile alveolar macrophages communicate with alveolar epithelium to modulate immunity. Nature. 2014; 506 (7489): 503–6.
  46. Lu Y., Wang X-M., Yang P., Han L., Wang Y-Z., Zheng Z-H., Wu F., Zhang W.-J., Zhang L. Effect of gap junctions on RAW264. 7 macrophages infected with H37Rv. Medicine. 2018; 97 (35): e12125.
  47. Shen C., Chen J.H., Lee Y., Hassan Md.M, Kim S.J., Choi E.Y., S-T. Hong, Park B-H., Park J. Mtor–and sgk–mediated connexin 43 expression participates in lipopolysaccharide–stimulated macrophage migration through the inos/src/fak axis. The J. of Immunol. 2018; 201 (10): 2986–97.
  48. Eugenin E.A. Brañes M.C., Berman J.W., Sáez J.C. TNF-α plus IFN-γ induce connexin 43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. The J. of Immunol. 2003; 170 (3): 1320–8.
  49. Aasen T. Sansano I., Montero M.Á., Romagosa C., Temprana-Salvador J., Martinez-Marti A., Moliné T., Hernández-Losa J., y Cajal S.R. Insight into the role and regulation of gap junction genes in lung cancer and identification of nuclear Cx43 as a putative biomarker of poor prognosis. Cancers. 2019; 11 (3): 320.
  50. Yu M., Zhang C., Li L., Dong S., Zhang N., Tong X. Cx43 reverses the resistance of A549 lung adenocarcinoma cells to cisplatin by inhibiting EMT. Oncology reports. 2014; 31 (6): 2751–8.
  51. Fukumasu H., Avanzo J.L., Sanches D.S., Mennecier G., Mori C.M.C., Dagli M.L.Z. Higher susceptibility of spontaneous and NNK-induced lung neoplasms in connexin 43 deficient CD1×AJ F1 mice: Paradoxical expression of connexin 43 during lung carcinogenesis. Molecular carcinogenesis. 2013; 52 (7): 497–506.
  52. Zhao J. Q. Sun F-J., Liu S-S., Yang J., Wu Y-Q., Li G-S., Chen Q-Y., Wang J-X.Expression of connexin 43 and E–cadherin protein and mRNA in non–small cell lung cancers in Chinese patients. Asian Pacific Journal of Cancer Prevention. 2013; 14 (2): 639–43.
  53. Piwowarczyk K., Kwiecień E., Sośniak J., Zimoląg E., Guzik E., Sroka J., Madeja Z., Czyż J. Fenofibrate interferes with the diapedesis of lung adenocarcinoma cells through the interference with Cx43/EGF–dependent intercellular signaling. Cancers. 2018; 10 (10): 363.
  54. Good M.E., Ek–Vitorin J.F., Burt J.M. Structural determinants and proliferative consequences of connexin 37 hemichannel function in insulinoma cells. J. of Biological Chemistry. 2014; 289 (44): 30379–86.
  55. Abraham V., Chou M.L., George P., Pooler P., Zaman A., Savani R.C., Koval M. Heterocellular gap junctional communication between alveolar epithelial cells. American J. of Physiology–Lung Cellular and Molecular Physiology. 2001; 280 (6): 1085–93.
  56. Chen W., Tong W., Guo Y., He B., Chen L., Yang W., Wu C., Ren D., Zheng P., Feng J. Upregulation of Connexin-43 is Critical for Irradiation-induced Neuroinflammation. Neurol Disord Drug Targets. 2018; 17 (7): 539–46. DOI: 10.2174/1871527317666180706124602.
  57. Trovato–Salinaro E., Failla M., Mastruzzo C., Tomaselli V., Gili E., Crimi N., Condorelli D.F., Vancheri C. Altered intercellular communication in lung fibroblast cultures from patients with idiopathic pulmonary fibrosis. Respiratory research. 2006; 7: 1–9.
  58. McNair A.J. Wilson K.S., Martin P.E., Welsh D.J., Dempsie Y.Connexin 43 plays a role in proliferation and migration of pulmonary arterial fibroblasts in response to hypoxia. Pulmonary Circulation. 2020; 10 (3): 2045894020937134.
  59. Misharin A.V., Morales-Nebreda L., Reyfman P.A., Cuda C.M., Walter J.M., McQuattie-Pimentel A.C., Chen C-I., Anekalla K.R., Joshi N., Williams K.J.N., Abdala-Valencia H., Yacoub T.J., Chi M., Chiu S., Gonzalez-Gonzalez F.J., Gates K., Lam A.P., Ncholson T.T., Homan P.J., Soberanes S., Dominguez S., Morgan V.K., Saber R., Shaffer A., Hinchcliff M., Marshall S.A., Bharat A., Berdnikovs S., Bhorade S.M., Bartom E.T., Morimoto R.I., Balch W.E., Sznajder J.I., Chandel N.S., Mutlu G.M., Jain M., Gottardi C.J., Singer B.D., Ridge K.M., Bagheri N., Shilatifard A., Budinger G.R.S., Perlman H. Monocyte–derived alveolar macrophages drive lung fibrosis and persist in the lung over the life span. J. of Experimental Medicine. 2017; 214 (8): 2387–404.
  60. Aran D., Looney A.P., Liu L., Wu E., Fong V., Hsu A., Chak S., Naikawadi R.P., Wolters P.J., Abate A.R., Butte A. J., Bhattacharya M. Reference–based analysis of lung single–cell sequencing reveals a transitional profibrotic macrophage. Nature immunology. 2019; 20 (2): 163–72.
  61. Idzko M., Ferrari D., Eltzschig H. K. Nucleotide signalling during inflammation. Nature. 2014; 509 (7500): 310–7.
  62. Bhattacharyya A. Torre P., Yadav P., Boostanpour K., Chen T.Y., Tsukui T., Sheppard D., Muramatsu R., Seed R.I., Nishimura S.L., Jung J.B., Tang X-Z., Allen C.D. C., Bhattacharya M. Macrophage Cx43 is necessary for fibroblast cytosolic calcium and lung fibrosis after injury. Frontiers in immunology. 2022; 13: 880887.
  63. Johnson L.N., Koval M. Cross–talk between pulmonary injury, oxidant stress, and gap junctional communication. Antioxidants & redox signaling. 2009; 11 (2): 355–67.
  64. Nakamura K., Inai T., Nakamura K., Shibata Y.Distribution of gap junction protein connexin 37 in smooth muscle cells of the rat trachea and pulmonary artery. Archives of histology and cytology. 1999; 62 (1): 27–37.
  65. Iyer S.S. Pulskens W.P., Sadler J.J., Butter L.M., Teske G.J., Ulland T.K., Eisenbarth S.C., Florquin S., Flavell R.A., Leemans J.C., Sutterwala F.S. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proceedings of the National Academy of Sciences. 2009; 106 (48): 20388–93.
  66. McDonald B., Pittman K., Menezes G.B., Hirota S.A., Slaba I., Waterhouse C.C.M., Beck P. L., Muruve D.A., Kubes P. Intravascular danger signals guide neutrophils to sites of sterile inflammation. Science. 2010; 330 (6002): 362–6.
  67. Elliott M.R., Chekeni F.B., Trampont P.C., Lazarowski E.R., Kadl A., Walk S.F., Park D., Woodson R.I., Ostankovich M., Sharma P., Lysiak J., Harden T. K., Leitinger N., Ravichandran K.S.Nucleotides released by apoptotic cells act as a find–me signal to promote phagocytic clearance. Nature. 2009; 461 (7261): 282–6.
  68. Wang N., De Bock M., Decrock E., Bol M., Gadicherla A., Vinken M., Rogiers V., Bukauskas F.F., Bultynck G., Leybaert L. Paracrine signaling through plasma membrane hemichannels. Biochimica et Biophysica Acta (BBA)–Biomembranes. 2013; 1828 (1): 35–50.
  69. De Bock M. Wang N., Bol M., Decrock E., Ponsaerts R., Bultynck G., Dupont G., Leybaert L. Connexin 43 hemichannels contribute to cytoplasmic Ca2+ oscillations by providing a bimodal Ca2+–dependent Ca2+ entry pathway. J. of Biological Chemistry. 2012; 287 (15): 12250–66.
  70. Parthasarathi K., Ichimura H., Monma E., Lindert J., Quadri S., Issekutz A., Bhattacharya J.Connexin 43 mediates spread of Ca 2+–dependent proinflammatory responses in lung capillaries. The J. of clinical investigation. 2006; 116 (8): 2193–200.
  71. Yeini E., Ofek P., Pozzi S., Albeck N., Ben-Shushan D., Tiram G., Golan S., Kleiner R., Sheinin R. Dangoor S.I., Reich-Zeliger S., Grossman R., Ram Z., Brem H., Thomas M. H., Magod P., Friedmann-Morvinski D., Madi A., Satchi-Fainaro R. P–selectin axis plays a key role in microglia immunophenotype and glioblastoma progression. Nature communications. 2021; 12 (1): 1912.
  72. Derouette J.P., Wong C., Burnier L., Morel S., Sutter E., Galan K., Brisset A.C., Roth I., Chadjichristos C.E., Kwak B.R. Molecular role of Cx37 in advanced atherosclerosis: a micro–array study. Atherosclerosis. 2009; 206 (1): 69–76.
  73. De Bock M., Marijke De Bock, Wang N., Decrock E., Bultynck G., Leybaert L. Intracellular cleavage of the Cx43 C-terminal domain by matrix-metalloproteases: a novel contributor to inflammation? Mediators of inflammation. 2015; 2015: 18.
  74. Ghatnekar G.S. Michael P O’Quinn M., Jourdan L.J., Gurjarpadhye A.A., Draughn R.L., Gourdie R.G. Connexin43 carboxyl-terminal peptides reduce scar progenitor and promote regenerative healing following skin wounding. Regen Med. 2009; 4 (2): 205–23. DOI: 10.2217/17460751.4.2.205.
  75. Yang H.T., Li L.L., Li S.N., Wu J.T., Zhang G.B., Ma J.F., Fu H.X., Cao S., Gao C.Y., Hu J. MicroRNA-155 inhibition attenuates myocardial infarction- induced connexin 43 degradation in cardiomyocytes by reducing pro-inflammatory macrophage activation. Cardiovascular Diagnosis and Therapy. 2022; 12 (3): 325.
  76. 74. Tittarelli A. Connexin channels modulation in pathophysiology and treatment of immune and inflammatory disorders. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease. 2021; 1867 (12): 166258.
  77. Fernandez-Cobo M., Gingalewski C., Drujan D., Antonio De Maio A. Downregulation of connexin 43 gene expression in rat heart during inflammation. The role of tumour necrosis factor. Cytokine. 1999; 11 (3): 216–24.
  78. Beccia E., Daniello V., Laselva O., Leccese G., Mangiacotti M., Di Gioia S., La Bella G., Guerra L., Matteo M., Angiolillo A., Conese M. Human amniotic mesenchymal stem cells and fibroblasts accelerate wound repair of cystic fibrosis epithelium. Life. 2022; 12 (5): 756.