English
Русский
ИММУНОГИСТОХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ ФАКТОРОВ ТРАНСКРИПЦИИ NeuroD1, Nkx2.2, Isl1, СОМАТОСТАТИНА И ХРОМОГРАНИНА А ПРИ РАЗЛИЧНЫХ ФОРМАХ ВРОЖДЕННОГО ГИПЕРИНСУЛИНИЗМА У ДЕТЕЙ
DOI: https://doi.org/10.29296/24999490-2020-01-07
Введение. Врожденный гиперинсулинизм (ВГ), проявляющийся в диффузной (ДВГ), очаговой (ОВГ) и атипичной формах, представляет трудности для морфологической диагностики. Целью исследования был морфологический анализ факторов транскрипции NeuroD1, Nkx2.2, Isl1; соматостатина и хромогранина А при ДВГ и ОВГ. Материал и методы. Имуногистохимическое исследование с антителами к хромогранину А, инсулину, соматостатину, NeuroD1, Nkx2.2, Isl1, морфометрический анализ фрагментов резецированной поджелудочной железы (ПЖ) 18 детей с ВГ до 4 лет и неизмененной ПЖ 9 детей до 1 года. Результаты. Соматостатин в группе ДВГ экспрессировался в 26,3±3,3% клеток островков Лангерганса и 2,1±0,4% клеток экзокринной части. При ОВГ он экспрессировался в 41,1±6,8% клеток эндокринной части, в 14,2±2,6% клеток аденоматозных зон и в 2,3±0,6% клеток экзокринной части. При ДВГ Isl1 экспрессировался в 59,8±7,1% клеток островков Лангерганса и в 4,0±0,7% клеток экзокринной части. При ОВГ Isl1 экспрессировали в островках Лангерганса 87,3±3,2% клеток, в аденоматозных структурах – 88,3±1,5%, в экзокринной части – 6,5±1,7%. Nkx2.2 при ДВГ и ОВГ в островках Лангерганса экспрессировали соответственно 55,9±7,9 и 69,3±10,4% клеток, а в экзокринной части – 5,3±1,7% и 5,4±1,3%. В аденоматозных структурах уровень его экспрессии был сопоставим с Isl1. NeuroD1 при ДВГ и ОВГ в островках Лангерганса экспрессировали соответственно 58,4±9,7 и 83±4,7% клеток, в экзокринной части – 65,5±7,4 и 77,3±9,4%, в аденоматозных структурах – 80,2±10,9%. Количество клеток с экспрессией хромогранина А, Isl1, Nkx2.2 и NeuroD1 в эндокринной части, а NeuroD1 – и в экзокринной части при ДВГ и ОВГ было достоверно выше, чем в неизмененной ПЖ. Заключение. Наиболее демонстративным иммуногистохимическим маркером ВГ является NeuroD1, в то время как экспрессия соматостатина достоверно не повышается.
Для цитирования:
Митрофанова Л.Б., Хазратов А.О., Гальковский Б.Э., Сухоцкая А.А., Баиров В.Г., Рыжкова Д.В., Пойда М.Д., Никитина И.Л. ИММУНОГИСТОХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ ФАКТОРОВ ТРАНСКРИПЦИИ NeuroD1, Nkx2.2, Isl1, СОМАТОСТАТИНА И ХРОМОГРАНИНА А ПРИ РАЗЛИЧНЫХ ФОРМАХ ВРОЖДЕННОГО ГИПЕРИНСУЛИНИЗМА У ДЕТЕЙ. Молекулярная медицина, 2020; (1): -https://doi.org/10.29296/24999490-2020-01-07
Список литературы:
- Stanley C.A. Advances in diagnosis and treatment of hyperinsulinism in infants and children. J. Clin. Endocrinol. Metab. 2002; 87: 4857–9 https://doi.org/10.1210/jc.2002-021403
- De León D.D., Stanley C.A. Mechanisms of Disease: advances in diagnosis and treatment of hyperinsulinism in neonates. Nat Clin. Pract. Endocrinol. Metab. 2007; 3: 57–68 https://doi.org/10.1038/ncpendmet0368
- Demirbilek H. and Hussain K. Congenital Hyperinsulinism: Diagnosis and Treatment Update. J. Clin. Res Pediatr Endocrinol. 2017; 9 (2): 69–87 doi:10.4274/jcrpe.2017.S007
- Arnoux J.B., Verkarre V., Saint-Martin C., Montravers F., Brassier A., Valayannopoulos V. et al. Congenital hyperinsulinism: current trends in diagnosis and therapy. Orphanet J. Rare Dis. 2011; 6: 63 https://doi.org/10.1186/1750-1172-6-63
- Senniappan S., Shanti B., James C., Hussain K. Hyperinsulinaemic hypoglycaemia: genetic mechanisms, diagnosis and management. J. Inherit Metab. Dis. 2012; 35: 589–601 https://doi.org/10.1007/s10545-011-9441-2
- Sempoux Ch., Guiot Y., Jaubert F., Rahier J. Focal and diffuse forms of congenital hyperinsulinism: The keys for differential diagnosis Endocrine Pathology. 2004; 15 (3): 241–6.
- Han B., Mohamed Z., Estebanez M.S. et al. Atypical Forms of Congenital Hyperinsulinism in Infancy Are Associated With Mosaic Patterns of Immature Islet Cells. J. Clin. Endocrinol Metab. 2017; 102 (9): 3261–7 https://doi.org/10.1210/jc.2017-00158
- Sweet C.B., Grayson S., Polak M. Management strategies for neonatal hypoglycemia. J. Pediatr Pharmacol Ther. 2013; 18: 199–208 https://doi.org/10.5863/1551-6776-18.3.199
- Lord K., De León D.D. Monogenic hyperinsulinemic hypoglycemia: current insights into the pathogenesis and management. Int J. Pediatr Endocrinol. 2013; 1: 3–12 https://doi.org/10.1186/1687-9856-2013-3
- Laje P., States L.J., Zhuang H., Becker S.A., Palladino A.A., Stanley C.A. et al. Accuracy of PET/CT scan in the diagnosis of the focal form of congenital hyperinsulinism. J. Pediatr Surg. 2013; 48: 388–93 https://doi.org/10.1016/j.jpedsurg.2012.11.025
- Meintjes M., Endozo R., Dickson J., Erlandsson K., Hussain K., Townsend C. et al. 18F-DOPA PET and enhanced CT imaging for congenital hyperinsulinism: initial UK experience from a technologist’s perspective. Nucl Med Commun. 2013; 34: 601–8 https://doi.org/10.1097/MNM.0b013e32836069d0
- Otonkoski T., Näntö-Salonen K., Seppänen M., Veijola R., Huopio H., Hussain K. et al. Noninvasive diagnosis of focal Hyperinsulinism of infancy with [18F]-DOPA positron emission tomography. Diabetes. 2006; 55: 13–8 https://doi.org/10.2337/diabetes.55.01.06.db05-1128
- Oyama K., Sanno N., Teramoto A., Osamura R.Y. Expression of neuro D1 in human normal pituitaries and pituitary adenomas. Modern Pathology. 2001; 14 (9): 892–9 https://doi.org/10.1038/modpathol.3880408
- Pataskar A., Jung J., Smialowski P., Noack F. et al. NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program. The EMBO J. 2016; 35 (1): 24–45 https://doi.org/10.15252/embj.201591206
- Liu M., Pereira F.A., Price S.D., Chu M.J., Shope C. et al. Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes & development. 2000; 14 (22): 2839–54 https://doi.org/10.1101/gad.840500
- Bell G.I., Polonsky K.S. Diabetes mellitus and genetically programmed defects in β-cell function. Nature. 2001; 414 (6865): 788–91 https://doi.org/10.1038/414788a
- Cerf M.E. Transcription factors regulating β-cell function. European Journal of Endocrinology. 2006; 155 (5): 671–9 https://doi.org/10.1530/eje.1.02277
- Gu C., Stein G.H., Pan N., Goebbels S., Hörnberg H. et al. Pancreatic β cells require NeuroD to achieve and maintain functional maturity. Cell Metab. 2010; 11 (4): 298–310 https://doi.org/10.1016/j.cmet.2010.03.006
- Chae J.H., Stein G.H., Lee J.E. NeuroD: the predicted and the surprising. Mol. Cells. 2004;18: 271–88.
- Chao C.S., Loomis Z.L., Lee J.E., Sussel L. Genetic identification of a novel NeuroD1 function in the early differentiation of islet alpha, PP and epsilon cells. Dev Biol. 2007; 312: 523–32 https://doi.org/10.1016/j.ydbio.2007.09.057
- Ansari P.I., Marcora E., Geron I., Tyrberg B., Demeterco C. et al. NeuroD1 in the endocrine pancreas: Localization and dual function as an activator and repressor. Developmental Dynamics. 233: 946–53 https://doi.org/10.1002/dvdy.20443
- Mastracci T.L., Wilcox C., Panea C., Golden J.A., May C.L. and Sussel L. Nkx2.2 and Arx genetically interact to regulate pancreatic endocrine cell development and endocrine hormone expression. Dev Biol. 2011; 359 (1): 1–11. https://doi.org/10.1016/j.ydbio.2011.08.001
- Doyle M.J. and Sussel L. Nkx2.2 Regulates β-Cell Function in the Mature Islet. Diabetes. 2007; 56 (8): 1999–2007.
- Anderson K.R., Torres C.A., Solomon K., Becker T.C., Newgard C.B. et al. Cooperative Transcriptional Regulation of the Essential Pancreatic Islet Gene NeuroD1 (Beta2) by Nkx2.2 and Neurogenin 3. J. Biol. Chem. 2009; 284 (45): 31236–48. https://doi.org/10.1074/jbc.M109.048694
- Guo T., Wang W., Zhang H., Liu Y., Chen P. et al. Promotes Pancreatic Islet Cell Proliferation. PLoS One. 2011; 6 (8): e22387. https://doi.org/10.1371/journal.pone.0022387
- Кривова Ю.С., Барабанов В.М., Прощина А.Е., Савельев С.В. Распределение хромогранина А в поджелудочной железе плодов человека. Бюллетень экспериментальной биологии и медицины. 2013; 156 (12): 839–42. [Krivova Yu.S., Barabanov V.M., Proschina A.E., Saveliev S.V. Distribution of chromogranin A in the pancreas of human fetuses. Byulleten Eksperimentalnoj Biologii i Mediciny. 2013; 156 (12): 839–42 (in Russian)]
- Strowski M.Z., Parmar R.M., Blake A.D., Schaeffer J.M. Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology. 2000; 141 (1): 111–7 https://doi.org/10.1210/endo.141.1.7263
- Bremer A.A., Nobuhara K.K., Gitelman S.E. Congenital hyperinsulinism in an infant caused by a macroscopic insulin-producing lesion. J. Pediatr Endocrinol Metab. 2007; 20 (3): 437–40.
- Suchi M. The Pancreas in Stocker & Dehner’s Pediatric pathology [edited by] Stocker J.T., Dehner L.P. Husain A.N. – 3rd ed. 2011Wolters Kluwer. Lippincott Williams&Wilkins: Philadelphia – Tokyo, 743–79.
- Sempoux C., Capito C., Bellanné-Chantelot C., Verkarre V., de Lonlay P., Aigrain Y. et al. Morphological mosaicism of the pancreatic islets: a novel anatomopathological form of persistent hyperinsulinemic hypoglycemia of infancy. J. Clin. Endocrinol. Metab. 2011; 96: 3785–93 (MEDIUM). https://doi.org/10.1210/jc.2010-3032
- Goel P., Choudhury S.R. Persistent hyperinsulinemic hypoglycemia of infancy: An overview of current concepts. J. Indian Assoc Pediatr Surg. 2012; 17 (3): 99–103 https://doi.org/10.4103/0971-9261.98119
- Gu C., Stein G.H., Pan N. et al. Pancreatic beta cells require NeuroD to achieve and maintain functional maturity. Cell Metab. 2010; 11 (4): 298–310. https://doi.org/10.1016/j.cmet.2010.03.006
- Lejonklou M.H., Edfeldt K., Johansson T.A., Stålberg P., Skogseid B. Neurogenin 3 and neurogenic differentiation 1 are retained in the cytoplasm of multiple endocrine neoplasia type 1 islet and pancreatic endocrine tumor cells. Pancreas. 2009; 38 (3): 259–66. https://doi.org/10.1097/MPA.0b013e3181930818.
- De Lonlay P., Simon-Carre A., Ribeiro M.J., Boddaert N., Giurgea I., Laborde K., Bellanné-Chantelot C., Verkarre V., Polak M., Rahier J., Syrota A., Seidenwurm D., Nihoul-Fékété C., Robert J.J., Brunelle F., Jaubert F. Congenital hyperinsulinism: pancreatic [18F]fluoro-L-dihydroxyphenylalanine (DOPA) positron emission tomography and immunohistochemistry study of DOPA decarboxylase and insulin secretion. J. Clin. Endocrinol. Metab. 2006; 91 (3): 933–40. Epub 2006 Jan 10.
- Ahren B. Autonomic regulation of islet hormone secretion—implications for health and disease. Diabetologia. 2000; 43: 393–410 https://doi.org/10.1007/s001250051322
- Jetton T.L., Liang Y., Cincotta A.H. Systemic treatment with sympatholytic dopamine agonists improves aberrant -cell hyperplasia and GLUT2, glucokinase, and insulin immunoreactive levels in ob/ob mice. Metabolism. 2001; 50: 1377–84.
- Konturek S.J., Zabielski R., Konturek J.W., Czarnecki J. Neuroendocrinology of the pancreas; role of brain-gut axis in pancreatic secretion. Eur. J. Pharmacol. 2003; 481: 1–14 https://doi.org/10.1016/j.ejphar.2003.08.042
- Al-Brahim N.Y.Y., Asa S.L. My approach to pathology of the pituitary gland J. Clin. Pathol. 2006; 59: 1245–253 https://doi.org/10.1136/jcp.2005.031187
- Rodriguez M.J., Saura J., Finch C.C., Mahy N., Billett E.E. Localization of monoamine oxidase A and B in human pancreas, thyroid, and adrenal glands. J. Histochem Cytochem. 2000; 48: 147–51 https://doi.org/10.1177/002215540004800115
- Orlefors H., Sundin A., Fasth K.J., Oberg K., Langstrom B., Eriksson B., Bergstrom M. Demonstration of high monoaminoxidase-A levels in neuroendocrine gastroenteropancreatic tumors in vitro and in vivo-tumor visualization using positron emission tomography with 11C-harmine. Nucl. Med. Biol. 2003; 30: 669–79 https://doi.org/10.1016/S0969-8051(03)00034-9
- Mezey E., Eisenhofer G., Harta G., Hansson S., Gould L., Hunyady B., Hoffman B.J. A novel nonneuronal catecholaminergic system: exocrine pancreas synthesizes and releases dopamine. Proc Natl Acad Sci USA. 1996; 93: 10377–82.
- Ericson L.E., Hakanson R., Lundquist I. Accumulation of dopamine in mouse pancreatic B-cells following injection of l-DOPA. Localization to secretory granules and inhibition of insulin secretion. Diabetologia. 1977; 13: 117–24 https://doi.org/10.1007/BF00745138
- Du A., Hunter C.S., Murray J. et al. Islet-1 is required for the maturation, proliferation, and survival of the endocrine pancreas. Diabetes. 2009; 58 (9): 2059–69 https://doi.org/10.2337/db08-0987
- Mastracci T.L., Wilcox C.L., Arnes L. et al. Nkx2.2 and Arx genetically interact to regulate pancreatic endocrine cell development and endocrine hormone expression. Dev Biol. 2011; 359 (1): 1–11 https://doi.org/10.1016/j.ydbio.2011.08.001
- Papizan J.B., Singer R.A., Tschen S.-I., Dhawan S., Friel J.M., Hipkens S.B. et al. Nkx2.2 repressor complex regulates islet β-cell specification and prevents β-to-α-cell reprogramming. Genes Dev. 2011; 25 (21): 2291–305 https://doi.org/10.1101/gad.173039.111
- Han B., Mohamed Z., Estebanez M.S., Craigie R.J., Newbould M., Cheesman E. et al. Atypical Forms of Congenital Hyperinsulinism in Infancy Are Associated With Mosaic Patterns of Immature Islet Cells. The Journal of Clinical Endocrinology & Metabolism. 2017; 102 (9): 3261–7 https://doi.org/10.1210/jc.2017-00158