ИММУНОГИСТОХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ ФАКТОРОВ ТРАНСКРИПЦИИ NeuroD1, Nkx2.2, Isl1, СОМАТОСТАТИНА И ХРОМОГРАНИНА А ПРИ РАЗЛИЧНЫХ ФОРМАХ ВРОЖДЕННОГО ГИПЕРИНСУЛИНИЗМА У ДЕТЕЙ

DOI: https://doi.org/10.29296/24999490-2020-01-07

Л.Б. Митрофанова, доктор медицинских наук, А.О. Хазратов, Б.Э. Гальковский, А.А. Сухоцкая, кандидат медицинских наук, В.Г. Баиров, доктор медицинских наук, профессор, Д.В. Рыжкова, доктор медицинских наук, М.Д. Пойда, И.Л. Никитина, доктор медицинских наук ФГБУ «НМИЦ им. В.А. Алмазова», Российская Федерация, 197143, Санкт-Петербург, ул. Аккуратова, д. 2 E-mail: lubamitr@yandex.ru

Введение. Врожденный гиперинсулинизм (ВГ), проявляющийся в диффузной (ДВГ), очаговой (ОВГ) и атипичной формах, представляет трудности для морфологической диагностики. Целью исследования был морфологический анализ факторов транскрипции NeuroD1, Nkx2.2, Isl1; соматостатина и хромогранина А при ДВГ и ОВГ. Материал и методы. Имуногистохимическое исследование с антителами к хромогранину А, инсулину, соматостатину, NeuroD1, Nkx2.2, Isl1, морфометрический анализ фрагментов резецированной поджелудочной железы (ПЖ) 18 детей с ВГ до 4 лет и неизмененной ПЖ 9 детей до 1 года. Результаты. Соматостатин в группе ДВГ экспрессировался в 26,3±3,3% клеток островков Лангерганса и 2,1±0,4% клеток экзокринной части. При ОВГ он экспрессировался в 41,1±6,8% клеток эндокринной части, в 14,2±2,6% клеток аденоматозных зон и в 2,3±0,6% клеток экзокринной части. При ДВГ Isl1 экспрессировался в 59,8±7,1% клеток островков Лангерганса и в 4,0±0,7% клеток экзокринной части. При ОВГ Isl1 экспрессировали в островках Лангерганса 87,3±3,2% клеток, в аденоматозных структурах – 88,3±1,5%, в экзокринной части – 6,5±1,7%. Nkx2.2 при ДВГ и ОВГ в островках Лангерганса экспрессировали соответственно 55,9±7,9 и 69,3±10,4% клеток, а в экзокринной части – 5,3±1,7% и 5,4±1,3%. В аденоматозных структурах уровень его экспрессии был сопоставим с Isl1. NeuroD1 при ДВГ и ОВГ в островках Лангерганса экспрессировали соответственно 58,4±9,7 и 83±4,7% клеток, в экзокринной части – 65,5±7,4 и 77,3±9,4%, в аденоматозных структурах – 80,2±10,9%. Количество клеток с экспрессией хромогранина А, Isl1, Nkx2.2 и NeuroD1 в эндокринной части, а NeuroD1 – и в экзокринной части при ДВГ и ОВГ было достоверно выше, чем в неизмененной ПЖ. Заключение. Наиболее демонстративным иммуногистохимическим маркером ВГ является NeuroD1, в то время как экспрессия соматостатина достоверно не повышается.

Список литературы: 
  1. Stanley C.A. Advances in diagnosis and treatment of hyperinsulinism in infants and children. J. Clin. Endocrinol. Metab. 2002; 87: 4857–9 https://doi.org/10.1210/jc.2002-021403
  2. De León D.D., Stanley C.A. Mechanisms of Disease: advances in diagnosis and treatment of hyperinsulinism in neonates. Nat Clin. Pract. Endocrinol. Metab. 2007; 3: 57–68 https://doi.org/10.1038/ncpendmet0368
  3. Demirbilek H. and Hussain K. Congenital Hyperinsulinism: Diagnosis and Treatment Update. J. Clin. Res Pediatr Endocrinol. 2017; 9 (2): 69–87 doi:10.4274/jcrpe.2017.S007
  4. Arnoux J.B., Verkarre V., Saint-Martin C., Montravers F., Brassier A., Valayannopoulos V. et al. Congenital hyperinsulinism: current trends in diagnosis and therapy. Orphanet J. Rare Dis. 2011; 6: 63 https://doi.org/10.1186/1750-1172-6-63
  5. Senniappan S., Shanti B., James C., Hussain K. Hyperinsulinaemic hypoglycaemia: genetic mechanisms, diagnosis and management. J. Inherit Metab. Dis. 2012; 35: 589–601 https://doi.org/10.1007/s10545-011-9441-2
  6. Sempoux Ch., Guiot Y., Jaubert F., Rahier J. Focal and diffuse forms of congenital hyperinsulinism: The keys for differential diagnosis Endocrine Pathology. 2004; 15 (3): 241–6.
  7. Han B., Mohamed Z., Estebanez M.S. et al. Atypical Forms of Congenital Hyperinsulinism in Infancy Are Associated With Mosaic Patterns of Immature Islet Cells. J. Clin. Endocrinol Metab. 2017; 102 (9): 3261–7 https://doi.org/10.1210/jc.2017-00158
  8. Sweet C.B., Grayson S., Polak M. Management strategies for neonatal hypoglycemia. J. Pediatr Pharmacol Ther. 2013; 18: 199–208 https://doi.org/10.5863/1551-6776-18.3.199
  9. Lord K., De León D.D. Monogenic hyperinsulinemic hypoglycemia: current insights into the pathogenesis and management. Int J. Pediatr Endocrinol. 2013; 1: 3–12 https://doi.org/10.1186/1687-9856-2013-3
  10. Laje P., States L.J., Zhuang H., Becker S.A., Palladino A.A., Stanley C.A. et al. Accuracy of PET/CT scan in the diagnosis of the focal form of congenital hyperinsulinism. J. Pediatr Surg. 2013; 48: 388–93 https://doi.org/10.1016/j.jpedsurg.2012.11.025
  11. Meintjes M., Endozo R., Dickson J., Erlandsson K., Hussain K., Townsend C. et al. 18F-DOPA PET and enhanced CT imaging for congenital hyperinsulinism: initial UK experience from a technologist’s perspective. Nucl Med Commun. 2013; 34: 601–8 https://doi.org/10.1097/MNM.0b013e32836069d0
  12. Otonkoski T., Näntö-Salonen K., Seppänen M., Veijola R., Huopio H., Hussain K. et al. Noninvasive diagnosis of focal Hyperinsulinism of infancy with [18F]-DOPA positron emission tomography. Diabetes. 2006; 55: 13–8 https://doi.org/10.2337/diabetes.55.01.06.db05-1128
  13. Oyama K., Sanno N., Teramoto A., Osamura R.Y. Expression of neuro D1 in human normal pituitaries and pituitary adenomas. Modern Pathology. 2001; 14 (9): 892–9 https://doi.org/10.1038/modpathol.3880408
  14. Pataskar A., Jung J., Smialowski P., Noack F. et al. NeuroD1 reprograms chromatin and transcription factor landscapes to induce the neuronal program. The EMBO J. 2016; 35 (1): 24–45 https://doi.org/10.15252/embj.201591206
  15. Liu M., Pereira F.A., Price S.D., Chu M.J., Shope C. et al. Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes & development. 2000; 14 (22): 2839–54 https://doi.org/10.1101/gad.840500
  16. Bell G.I., Polonsky K.S. Diabetes mellitus and genetically programmed defects in β-cell function. Nature. 2001; 414 (6865): 788–91 https://doi.org/10.1038/414788a
  17. Cerf M.E. Transcription factors regulating β-cell function. European Journal of Endocrinology. 2006; 155 (5): 671–9 https://doi.org/10.1530/eje.1.02277
  18. Gu C., Stein G.H., Pan N., Goebbels S., Hörnberg H. et al. Pancreatic β cells require NeuroD to achieve and maintain functional maturity. Cell Metab. 2010; 11 (4): 298–310 https://doi.org/10.1016/j.cmet.2010.03.006
  19. Chae J.H., Stein G.H., Lee J.E. NeuroD: the predicted and the surprising. Mol. Cells. 2004;18: 271–88.
  20. Chao C.S., Loomis Z.L., Lee J.E., Sussel L. Genetic identification of a novel NeuroD1 function in the early differentiation of islet alpha, PP and epsilon cells. Dev Biol. 2007; 312: 523–32 https://doi.org/10.1016/j.ydbio.2007.09.057
  21. Ansari P.I., Marcora E., Geron I., Tyrberg B., Demeterco C. et al. NeuroD1 in the endocrine pancreas: Localization and dual function as an activator and repressor. Developmental Dynamics. 233: 946–53 https://doi.org/10.1002/dvdy.20443
  22. Mastracci T.L., Wilcox C., Panea C., Golden J.A., May C.L. and Sussel L. Nkx2.2 and Arx genetically interact to regulate pancreatic endocrine cell development and endocrine hormone expression. Dev Biol. 2011; 359 (1): 1–11. https://doi.org/10.1016/j.ydbio.2011.08.001
  23. Doyle M.J. and Sussel L. Nkx2.2 Regulates β-Cell Function in the Mature Islet. Diabetes. 2007; 56 (8): 1999–2007.
  24. Anderson K.R., Torres C.A., Solomon K., Becker T.C., Newgard C.B. et al. Cooperative Transcriptional Regulation of the Essential Pancreatic Islet Gene NeuroD1 (Beta2) by Nkx2.2 and Neurogenin 3. J. Biol. Chem. 2009; 284 (45): 31236–48. https://doi.org/10.1074/jbc.M109.048694
  25. Guo T., Wang W., Zhang H., Liu Y., Chen P. et al. Promotes Pancreatic Islet Cell Proliferation. PLoS One. 2011; 6 (8): e22387. https://doi.org/10.1371/journal.pone.0022387
  26. Кривова Ю.С., Барабанов В.М., Прощина А.Е., Савельев С.В. Распределение хромогранина А в поджелудочной железе плодов человека. Бюллетень экспериментальной биологии и медицины. 2013; 156 (12): 839–42. [Krivova Yu.S., Barabanov V.M., Proschina A.E., Saveliev S.V. Distribution of chromogranin A in the pancreas of human fetuses. Byulleten Eksperimentalnoj Biologii i Mediciny. 2013; 156 (12): 839–42 (in Russian)]
  27. Strowski M.Z., Parmar R.M., Blake A.D., Schaeffer J.M. Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology. 2000; 141 (1): 111–7 https://doi.org/10.1210/endo.141.1.7263
  28. Bremer A.A., Nobuhara K.K., Gitelman S.E. Congenital hyperinsulinism in an infant caused by a macroscopic insulin-producing lesion. J. Pediatr Endocrinol Metab. 2007; 20 (3): 437–40.
  29. Suchi M. The Pancreas in Stocker & Dehner’s Pediatric pathology [edited by] Stocker J.T., Dehner L.P. Husain A.N. – 3rd ed. 2011Wolters Kluwer. Lippincott Williams&Wilkins: Philadelphia – Tokyo, 743–79.
  30. Sempoux C., Capito C., Bellanné-Chantelot C., Verkarre V., de Lonlay P., Aigrain Y. et al. Morphological mosaicism of the pancreatic islets: a novel anatomopathological form of persistent hyperinsulinemic hypoglycemia of infancy. J. Clin. Endocrinol. Metab. 2011; 96: 3785–93 (MEDIUM). https://doi.org/10.1210/jc.2010-3032
  31. Goel P., Choudhury S.R. Persistent hyperinsulinemic hypoglycemia of infancy: An overview of current concepts. J. Indian Assoc Pediatr Surg. 2012; 17 (3): 99–103 https://doi.org/10.4103/0971-9261.98119
  32. Gu C., Stein G.H., Pan N. et al. Pancreatic beta cells require NeuroD to achieve and maintain functional maturity. Cell Metab. 2010; 11 (4): 298–310. https://doi.org/10.1016/j.cmet.2010.03.006
  33. Lejonklou M.H., Edfeldt K., Johansson T.A., Stålberg P., Skogseid B. Neurogenin 3 and neurogenic differentiation 1 are retained in the cytoplasm of multiple endocrine neoplasia type 1 islet and pancreatic endocrine tumor cells. Pancreas. 2009; 38 (3): 259–66. https://doi.org/10.1097/MPA.0b013e3181930818.
  34. De Lonlay P., Simon-Carre A., Ribeiro M.J., Boddaert N., Giurgea I., Laborde K., Bellanné-Chantelot C., Verkarre V., Polak M., Rahier J., Syrota A., Seidenwurm D., Nihoul-Fékété C., Robert J.J., Brunelle F., Jaubert F. Congenital hyperinsulinism: pancreatic [18F]fluoro-L-dihydroxyphenylalanine (DOPA) positron emission tomography and immunohistochemistry study of DOPA decarboxylase and insulin secretion. J. Clin. Endocrinol. Metab. 2006; 91 (3): 933–40. Epub 2006 Jan 10.
  35. Ahren B. Autonomic regulation of islet hormone secretion—implications for health and disease. Diabetologia. 2000; 43: 393–410 https://doi.org/10.1007/s001250051322
  36. Jetton T.L., Liang Y., Cincotta A.H. Systemic treatment with sympatholytic dopamine agonists improves aberrant -cell hyperplasia and GLUT2, glucokinase, and insulin immunoreactive levels in ob/ob mice. Metabolism. 2001; 50: 1377–84.
  37. Konturek S.J., Zabielski R., Konturek J.W., Czarnecki J. Neuroendocrinology of the pancreas; role of brain-gut axis in pancreatic secretion. Eur. J. Pharmacol. 2003; 481: 1–14 https://doi.org/10.1016/j.ejphar.2003.08.042
  38. Al-Brahim N.Y.Y., Asa S.L. My approach to pathology of the pituitary gland J. Clin. Pathol. 2006; 59: 1245–253 https://doi.org/10.1136/jcp.2005.031187
  39. Rodriguez M.J., Saura J., Finch C.C., Mahy N., Billett E.E. Localization of monoamine oxidase A and B in human pancreas, thyroid, and adrenal glands. J. Histochem Cytochem. 2000; 48: 147–51 https://doi.org/10.1177/002215540004800115
  40. Orlefors H., Sundin A., Fasth K.J., Oberg K., Langstrom B., Eriksson B., Bergstrom M. Demonstration of high monoaminoxidase-A levels in neuroendocrine gastroenteropancreatic tumors in vitro and in vivo-tumor visualization using positron emission tomography with 11C-harmine. Nucl. Med. Biol. 2003; 30: 669–79 https://doi.org/10.1016/S0969-8051(03)00034-9
  41. Mezey E., Eisenhofer G., Harta G., Hansson S., Gould L., Hunyady B., Hoffman B.J. A novel nonneuronal catecholaminergic system: exocrine pancreas synthesizes and releases dopamine. Proc Natl Acad Sci USA. 1996; 93: 10377–82.
  42. Ericson L.E., Hakanson R., Lundquist I. Accumulation of dopamine in mouse pancreatic B-cells following injection of l-DOPA. Localization to secretory granules and inhibition of insulin secretion. Diabetologia. 1977; 13: 117–24 https://doi.org/10.1007/BF00745138
  43. Du A., Hunter C.S., Murray J. et al. Islet-1 is required for the maturation, proliferation, and survival of the endocrine pancreas. Diabetes. 2009; 58 (9): 2059–69 https://doi.org/10.2337/db08-0987
  44. Mastracci T.L., Wilcox C.L., Arnes L. et al. Nkx2.2 and Arx genetically interact to regulate pancreatic endocrine cell development and endocrine hormone expression. Dev Biol. 2011; 359 (1): 1–11 https://doi.org/10.1016/j.ydbio.2011.08.001
  45. Papizan J.B., Singer R.A., Tschen S.-I., Dhawan S., Friel J.M., Hipkens S.B. et al. Nkx2.2 repressor complex regulates islet β-cell specification and prevents β-to-α-cell reprogramming. Genes Dev. 2011; 25 (21): 2291–305 https://doi.org/10.1101/gad.173039.111
  46. Han B., Mohamed Z., Estebanez M.S., Craigie R.J., Newbould M., Cheesman E. et al. Atypical Forms of Congenital Hyperinsulinism in Infancy Are Associated With Mosaic Patterns of Immature Islet Cells. The Journal of Clinical Endocrinology & Metabolism. 2017; 102 (9): 3261–7 https://doi.org/10.1210/jc.2017-00158