МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ РАЗВИТИЯ РЕЗИСТЕНТНОСТИ ПРИ ЦЕЛЕВОМ ВОЗДЕЙСТВИИ НА МОЛЕКУЛЯРНЫЕ МИШЕНИ НА ПРИМЕРЕ МЕЛАНОМЫ КОЖИ

DOI: https://doi.org/10.29296/24999490-2020-06-02

Т.Г. Рукша, Д.С. Земцов, С.Н. Лаврентьев, Н.В. Палкина, А.Р. Есимбекова ФГБОУ ВО «Красноярский государственный медицинский университет им. профессора В.Ф. Войно-Ясенецкого» Министерства здравоохранения Российской Федерации, Российская Федерация, 660022, Красноярский край, Красноярск, ул. Партизана Железняка, 1 E-mail: [email protected]

Меланома кожи является крайне гетерогенным злокачественным новообразованием, что обеспечивало традиционно низкую эффективность химиотерапевтических противоопухолевых препаратов. В 2002 г. было выявлено, что порядка 50% меланом имеют соматическую мутацию в онкогене BRAF, приводящую к неконтролируемой активации сигнального каскада митогенактивируемых протеинкиназ, тем самым играя важную роль в обеспечении пролиферации и выживаемости опухолевых клеток. Патогенетический подход, нацеленный на блокирование эффектов мутации данного гена, казался обоснованным способом повышения эффективности терапии заболевания. Тем не менее эффективность данного лечения у многих пациентов ограничена в среднем шестью месяцами из-за развития резистентности приобретенного генеза. Приобретенная резистентность опухолевых клеток, как правило, связана с реактивацией сигнальных каскадов, участвующих в регуляции клеточной пролиферации. Помимо приобретенной резистентности, у ряда пациентов с BRAF-положительной меланомой наблюдается внутренняя резистентность, обусловленная, в частности, мутациями генов-супрессоров опухолевого роста. Это обусловливает актуальность исследования молекулярных механизмов опухолевого роста, в том числе, функционирования механизмов внутриклеточной сигнализации. Понимание данных процессов позволит разрабатывать более эффективные стратегии лечения онкологических заболеваний. В статье представлен обзор литературы и собственных данных, а также результаты клинических исследований о характере механизмов резистентности и стратегий их устранения.
Ключевые слова: 
меланома, резистентность
Для цитирования: 
Рукша Т.Г., Земцов Д.С., Лаврентьев С.Н., Палкина Н.В., Есимбекова А.Р. МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ РАЗВИТИЯ РЕЗИСТЕНТНОСТИ ПРИ ЦЕЛЕВОМ ВОЗДЕЙСТВИИ НА МОЛЕКУЛЯРНЫЕ МИШЕНИ НА ПРИМЕРЕ МЕЛАНОМЫ КОЖИ. Молекулярная медицина, 2020; (6): -https://doi.org/10.29296/24999490-2020-06-02

Список литературы: 
  1. Maverakis E., Cornelius L.A., Bowen G.M., Phan T., Patel F.B., Fitzmaurice S., He Y., Burrall B., Duong C., Kloxin A.M., HawaSultani H., Wilken R., Martinez S.R., Patel F. Metastatic melanoma – a review of current and future treatment options. Acta Derm Venereol. 2015; 95 (5): 516–24. https://doi.org/10.2340/00015555-2035.
  2. Atkins M.B., Hsu J., Lee S., Cohen G.I., Flaherty L.E., Sosman J.A., Sondak V.K., Kirkwood J.M. Phase III trial comparing concurrent biochemotherapy with cisplatin, vinblastine, dacarbazine, interleukin-2, and interferon alfa-2b with cisplatin, vinblastine, and dacarbazine alone in patients with metastatic malignant melanoma (E3695): a trial coordinated by the Eastern Cooperative Oncology Group. J. Clin. Oncol. 2008; 26 (35): 5748–54.
  3. Middleton M.R., Grob J.J., Aaronson N., Fierlbeck G., Tilgen W., Seiter S., Gore M., Aamdal S., Cebon J., Coates A., Dreno B., Henz M., Schadendorf D., Kapp A., Weiss J., Fraass U., Statkevich P., Muller M., Thatcher N. Randomized phase III study of temozolomide versus dacarbazine in the treatment of patients with advanced metastatic malignant melanoma. J. of Clinical Oncology. 2000; 18 (1): 158–66.
  4. Каприн А.Д., Старинский В.В., Петрова Г.В. Злокачественные новообразования в России в 2018 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019; 250. [A.D. Kaprin, V. Starinsky, and G. V. Petrova. Malignant neoplasms in Russia in 2018 (morbidity and mortality). М.: MNIOI im. P.A. Gercena filial FGBU «NMIC radiologii» Minzdrava Rossii, 2019; 250 (in Russian)]
  5. Артюхов И.П., Гаврилюк Д.В., Дыхно Ю.А., Рукша Т.Г. Заболевемость меланомой кожи взрослого населения Красноярского края. Сибирское медицинское обозрение. 2013; 6 (84): 37–42. [Artyukhov I.P., Gavrilyuk D.V., Dihno J.A., Ruksha T.G. Zabolevaemosti melanoma of the skin of the adult population of the Krasnoyarsk territory. Siberian medical review. 2013; 6 (84): 37–42 (In Russian)]
  6. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. Cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018; 68 (6): 394–424. https://doi.org/10.3322/caac.21492.
  7. Cascinelli N., Belli F., MacKie R.M., Santinami M., Bufalino R., Morabito A. Effect of long-term adjuvant therapy with interferon alpha-2a in patients with regional node metastases from cutaneous melanoma: a randomised trial. Lancet. 2001; 15; 358 (9285): 866–9.
  8. Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Garnett M.J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B.A., Cooper C., Shipley J., Hargrave D., Pritchard-Jones K., Maitland N., Chenevix-Trench G., Riggins G.J., Bigner D.D., Palmieri G., Cossu A., Flanagan A., Nicholson A., Ho J.W., Leung S.Y., Yuen S.T., Weber B.L., Seigler H.F., Darrow T.L., Paterson H., Marais R., Marshall C.J., Wooster R, Stratton M.R., Mutations of the BRAF gene in human cancer. Nature. 2002; 417 (6892): 949–54. https://doi.org/10.1038/nature00766
  9. Janet L., Maldonado., Jane Fridlyand, Hetal Patel, Ajay N. Jain, Klaus Busam, Toshiro Kageshita, Tomomichi Ono, Donna G. Albertson, Dan Pinkel, Boris C. Bastian. Determinants of BRAF Mutations in Primary Melanomas. J. Natl. Cancer Inst. 2003; 95 (24): 1878–90. https://doi.org/10.1093/jnci/djg123
  10. Aksenenko M.B., Kirichenko A.K., Ruksha T.G. Russian study of morphological prognostic factors characterization in BRAF-mutant cutaneous melanoma. Pathol Res Pract. 2015; 211 (7): 521–7.
  11. Орлова К.В., Харкевич Г.Ю., Утяшев И.А., Демидов Л.В. Персонализированная терапия метастатической меланомы кожи. Эффективная фармакотерапия. 2016; 39: 16–21. [Orlova K.V., Kharkevich G.Yu., Utyashev I.A., Demidov L.V. Personalized Therapy for Metastatic Skin Melanoma. Jeffektivnaja farmakoterapija. 2016; 39: 16–21 (in Russian)]
  12. Tsai J., Lee J.T., Wang W., Zhang J., Cho H., Mamo S., Bremer R., Gillette S., Kong J., Haass N. K., Sproesser K., Li L., Smalley K. S. M., Fong D., Zhu Y-L.,Marimuthu A., Nguyen H., Lam B., Liu J., Cheung I., Rice J., Suzuki Y.,Luu C.,Settachatgul C., Shellooe R., Cantwell J., Kim S-H., Schlessinger J., Zhang K. Y. J., West B.L., Powell B., Habets G., Zhang C., Ibrahim P. N.,Hirth P,Artis D.R., Herlyn M.,Bollag G. Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity. Proc Natl Acad Sci. 2008; 105 (8): 3041–6. https://doi.org/10.1073/pnas.0711741105
  13. McArthur G.A., Chapman P.B., Robert C., Larkin J., Haanen J.B., Dummer R., Ribas A., Hogg D., Hamid O., Ascierto P.A., Garbe C., Testori A., Maio M., Lorigan P., Lebbé C., Jouary T., Schadendorf D., O’Day S.J., Kirkwood J.M., Eggermont A.M., Dréno B., Sosman J.A., Flaherty K.T., Yin M., Caro I., Cheng S., Trunzer K., Hauschild A. Safety and efficacy of vemurafenib in BRAF (V600E) and BRAF (V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. The Lancet Oncology. 2014; 15 (3): 323–32. https://doi.org/10.1016/S1470-2045(14)70012-9
  14. Amaral T., Sinnberg T., Meier F., Krepler C., Levesque M., Niessner H., Garbe C. The mitogen-activated protein kinase pathway in melanoma part I – activation and primary resistance mechanisms to BRAF inhibition. European J. of Cancer. 2017; 73: 93–101. https://doi.org/10.1016/j.ejca.2016.12.010
  15. Hugo W., Shi H., Sun L., Piva M., Song C., Kong X., Moriceau G., Hong A., Dahlman K.B., Johnson D.B., Sosman J.A., Ribas A., Lo R.S. Non-genomic and immune evolution of melanoma acquiring MAPKi resistance. Cell. 2015; 162 (6): 1271–85. https://doi.org/10.1016/j.cell.2015.07.061
  16. Eliezer M. Van Allen., Wagle N., Sucker A., Treacy D.J., Johannessen C.M., Goetz E.M., Place C.S., Taylor-Weiner A., Whittaker S., Kryukov G.V., Hodis E., Rosenberg M., McKenna A., Cibulskis K., Farlow D., Zimmer L., Hillen U., Gutzmer R., Goldinger S.M., Ugurel S., Gogas H.J., Egberts F., Berking C., Trefzer U., Loquai C., Weide B., Hassel J.C., Gabriel S.B., Carter S.L., Getz G., Garraway L.A., Schadendorf D. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discovery. 2014; 4 (1): 94–109. https://doi.org/10.1158/2159-8290.CD-13-0617
  17. Johnson D.B., Menzies A.M., Zimmer L., Eroglu Z., Ye F., Zhao S., Rizos H., Sucker A., Scolyer R.A., Gutzmer R., Gogas H., Kefford K.F., Thompson J.F., Becker J.C., Berking C., Egberts F., Loquai C., GoldingerS.M., Pupo G.M., Hugo W., Kong X., Garraway L.A., Sosman J.A., Ribas A., Lo R.S., Long G.V., Schadendorf D. Acquired BRAF inhibitor resistance: a multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms. Clinical Cancer Research. 2015; 51 (18): 2792–9. https://doi.org/10.1016/j.ejca.2015.08.022.
  18. Shen-hsi Yang., Sharrocks A.D., Whitmarsh A.J. MAP kinase signalling cascades and transcriptional regulation. Gene. 2013; 513: 1–13. https://doi.org/10.1016/j.gene.2012.10.033
  19. Gray-Schopfer V., Wellbrock C., Marais R. Melanoma biology and new targeted therapy. Nature. 2007; 445 (7130): 851–7. https://doi.org/10.1038/nature05661
  20. Демидов Л.В., Утяшев И.А., Харкевич Г.Ю. Подходы к диагностике и терапии меланомы кожи: эраперсонализированной медицины. Consilium Medicum. Дерматология. 2013; 2 (3): 42–7. [Demidov L.V., Utyashev I.A., Kharkevich G.Yu. Аpproaches to the diagnosis and therapy of cutaneous melanoma: repersonalization medicine. ConsiliumMedicum. Dermatology. 2013; 2 (3): 42–7 (in Russian)]
  21. Wagle N., Van Allen E.M., Treacy D.J, Frederick D.T., Cooper Z.A., Taylor-Weiner A., Rosenberg M., Goetz E.M., Sullivan R.J., Farlow D.N., Friedrich D.C., Anderka K., Perrin D., Johannessen C.M., McKenna A., Cibulskis K., Kryukov G., Hodis E., Lawrence D.P., Fisher S., Getz G., Gabriel S.B., Carter S.L., Flaherty K.T., Wargo J.A., Garraway L.A. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined RAF/MEK inhibition. Cancer Disc. 2014; 4 (1): 61–8. https://doi.org/10.1158/2159-8290.CD-13-0631
  22. Atzori MG., Ceci C., Ruffini F., Trapani M., Barbaccia M.L., Tentori L., D’Atri S., Lacal P.M., Graziani G. Role of VEGFR-1 in melanoma acquired resistance to the BRAF inhibitor vemurafenib. Journal of cellular and molecular medicine. 2019; 24: 465–75. https://doi.org/10.1111/jcmm.14755
  23. Wang J., Sinnberg T., Niessner H., Dölker R., Sauer B., Kempf W.E., Meier F., Leslie N.R., Schittek B. PTEN regulates IGF-1R-mediated therapy resistance in melanoma. Pigment Cell Melanoma Res. 2015; 28: 572–89. https://doi.org/10.1111/pcmr.12390
  24. Ng Y.K., Lee J.Y., Supko K.M., Khan A.S., Torres S.M., Berwick M., Ho J., Kirkwood J.M., Siegfried J.M., Stabile L.P. Pan-erbB inhibition potentiates BRAF inhibitors for melanoma treatment. Melanoma Res. 2014; 24 (3): 207–18. https://doi.org/10.1097/CMR.0000000000000060
  25. Yadav V., Zhang X., Liu J., Estrem S., Li S., Gong X-Q., Buchanan S., Henry J.R., Starling J.J., Peng S-B. Reactivation of Mitogen-activated Protein Kinase (MAPK) pathway by FGF Receptor 3 (FGFR3)/Ras mediates resistance to vemurafenib in human B-RAF V600E mutant melanoma. J. Biol. Chem. 2012; 287 (33): 28087–98. https://doi.org/10.1074/jbc.M112.377218.
  26. Poulikakos P.I., Persaud Y., Janakiraman M., Kong X., Ng C., Moriceau G., Shi H., Atefi M., Titz B., Gabay M.T., Salton M., Dahlman K.B., Tadi M., Wargo J.A., Flaherty K.T., Kelley M.C., Misteli T., Chapman P.B., Sosman J.A., Graeber T.G., Ribas A., Lo R.S., Rosen N., Solit D.B. RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E). Nature. 2011; 480 (7377): 387–90. https://doi.org/10.1038/nature10662
  27. Wagle N., Emery C., Berger MF., Davis MJ., Sawyer A., Pochanard P., Kehoe SM., Johannessen CM., Macconaill LE., Hahn WC., Meyerson M., Garraway LA. Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. J. Clin. Oncol. 2011; 29 (22): 3085–96. https://doi.org/10.1200/JCO.2010.33.2312
  28. Moriceau G., Hugo W., Hong A., Shi H., Kong X., Yu C.C., Koya R.C., Samatar A.A., Khanlou N., Braun J., Ruchalski K., Seifert H., Larkin J., Dahlman K.B., Johnson D.B., Algazi A., Sosman J.A., Ribas A., Lo R.S. Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction. Cancer Cell. 2015; 27 (2): 240–56. https://doi.org/10.1016/j.ccell.2014.11.018.
  29. Мазуренко Н.Н. Генетические особенности и маркеры меланомы кожи. Успехи молекулярной онкологии. 2014; 1 (2): 26–35. [Mazurenko N.N. Genetic alterations and markers of melanoma. Advances in Molecular Oncology. 2014; 1 (2): 26–35 (in Russian)]
  30. Rajkumar S., Watson I.R. Molecular characterization of cutaneous melanoma: creating a framework for targeted and immune therapies. Br. J. Cancer. 2016; 115 (2): 145–55. https://doi.org/10.1038/bjc.2016.195
  31. Fedorenko I.V., Gibney G.T., Keiran S.M. NRAS mutant melanoma: biological behavior and future strategies for therapeutic management. Oncogene. 2013; 32 (25): 3009–18. https://doi.org/10.1038/onc.2012.453.
  32. Grimaldi A.M., Simeone E., Festino L., Vanella V., Marco Palla M., Ascierto P.A. Novel mechanisms and therapeutic approaches in melanoma: targeting the MAPK pathway. Discovery Medicine. 2015; 19 (107): 455–61.
  33. Jiang C.C., Lai F., Thorne R.F., Yang F., Liu H., Hersey P., Zhang X.D. MEK-independent survival of B-RAFV600E melanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720. Clin Cancer Res. 2011; 17 (4): 721–30. https://doi.org/10.1158/1078-0432.CCR-10-2225
  34. Жуликов Я.А., Самойленко И.В., Демидов Л.В. Механизмы резистентности метастатической меланомы кожи к анти-PD-L терапии. Российский биотерапевтический журнал. 2018; 1 (17): 34–46. [Zhulikov Ya.A., Samoylenko I.V., Demidov L.V. Mechanisms of resistance to anti-PD-1 therapy in metastatic cutaneous melanoma. Rossijskij bioterapevticheskij zhurnal. 2018; 1 (17): 34–46 (in Russian)]
  35. Smalley K.S., Haass N.K., Brafford P.A., Lioni M., Flaherty K.T., Herlyn M. Multiple signaling pathways must be targeted to overcome drug resistance in cell lines derived from melanoma metastases. Mol Cancer Ther. 2006; 5 (5): 1136–44.
  36. Gopal Y.N., Deng W., Woodman S.E., Komurov K., Ram P., Smith P.D., Davies M.A.Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells. Cancer Res. 2010; 70 (21): 8736–47. https://doi.org/10.1158/0008-5472.CAN-10-0902.
  37. Paraiso K.H.T., Xiang Y., Rebecca V.W., Abel E.V., Chen Y.A., Munko A.C., Wood E., Fedorenko I.V., Sondak V.K., Anderson A.R.A., Ribas A., Palma M.D., Nathanson K.L., Koomen J.M., Messina J.L., Smalley K.S.M. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer Res. 2011; 71 (7): 2750–60. https://doi.org/10.1158/0008-5472.
  38. Lacouture M.E., Duvic M., Hauschild A., Prieto V.G., Robert C., Schadendorf D., Kim C.C., McCormack C.J., Myskowski P.L., Spleiss O., Trunzer K., Su F., Nelson B., Nolop K.B., Grippo J.F., Lee R.J., Klimek M.J., Troy J.L., Joe A.K. Analysis of dermatologic events in vemurafenib-treated patients with melanoma. Oncologist. 2013; 18 (3): 314–22. https://doi.org/10.1634/theoncologist.2012-0333.
  39. Solit DB., Rosen N. Resistance to BRAF inhibition in melanomas. N Engl J. Med. 2011; 364 (8): 772–4. https://doi.org/10.1056/NEJMcibr1013704.
  40. Long G.V., Eroglu Z., Infante J., Patel S.J. Long-term outcomes in patients with BRAF V600-mutant metastatic melanoma who received dabrafenib combined with trametinib. Clin. Oncol. 2018; 36 (7): 667–73. https://doi.org/10.1200/JCO.2017.74.1025
  41. Строяковский Д.Л., Абрамов М.Е., Демидов Л.В., Новик А.В., Орлова К.В., Проценко С.А, Самойленко И.В., Трофимова О.П., Харкевич Г.Ю., Юрченков А.Н. Злокачественные опухоли. 2019; 9 (3s2): 776. https://doi.org/10.18027/2224-5057-2019-9-3s2-243-258 [Stroyakovsky D.L., Abramov M.E., Demidov L.V., Novik A.V., Orlova K.V., Protsenko S.A, Samoylenko I.V., Trofimova O.P., Harkevich G.Yu., Yurchenkov A.N. Zlokačestvennye opuholi. 2019; 9 (3s2): 776. https://doi.org/10.18027/2224-5057-2019-9-3s2-243-258 (in Russian)]
  42. Kohno M., Tanimura S., Ozaki K. Targeting the extracellular signal-regulated kinase pathway in cancer therapy. Biol. Pharm. Bull. 2011; 34 (12): 1781–4.
  43. Ferguson J., Arozarena I., Ehrhardt M., Wellbrock C. Combination of MEK and SRC inhibition suppresses melanoma cell growth and invasion. Oncogene. 2013; 32 (1): 86–96. https://doi.org/10.1038/onc.2012.25.
  44. Siroy A.E., Davies M.A., Lazar A.J. The PI3K-AKT Pathway in Melanoma. Genetics of Melanoma. Cancer Genetics. Springer, New York, NY. 2016; 165–80. https://doi.org/10.1007/978-1-4939-3554-3_7.
  45. Watson I.R., Li L., Cabeceiras P.K., Mahdavi M., Gutschner T., Genovese G., Wang G., Fang Z., Tepper J.M., Stemke-Hale K., Tsai K.Y., Davies M.A., Mills G.B., Chin L. The RAC1 P29S hotspot mutation in melanoma confers resistance to pharmacological inhibition of RAF. 2014; 74: 4845–52. https://doi.org/10.1158/0008-5472.CAN-14-1232-T
  46. Whittaker S.R., Theurillat J.P., Van Allen E., Wagle N., Hsiao J., Cowley G.S., Schadendorf D., Root D.E., Garraway L.A. A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. Cancer Discov. 2013; 3: 350–62. https://doi.org/10.1158/2159-8290.CD-12-0470.
  47. Smalley K.S.M., Lioni M., Dalla Palma M., Xiao M., Desai B., Egyhazi S., Hansson J., Wu H., King A.J., Van Belle P., Elder D.E., Flaherty K.T., Herlyn M., Nathanson K.L. Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas. Mol Cancer Ther. 2008; 7 (9): 2876–83. https://doi.org/10.1158/1535-7163.MCT-08-0431
  48. Paraiso K.H., Fedorenko I.V., Cantini L.P., Munko A.C., Hall M., Sondak V.K., Messina J.L., Flaherty K.T., Smalley K.S. Recovery of phospho-ERK activity allows melanoma cells to escape from BRAF inhibitor therapy. Br. J. Cancer. 2010; 102 (12): 1724–30. https://doi.org/10.1038/sj.bjc.6605714
  49. Curtin J.A., Fridlyand J., Kageshita T., Patel H.N., Busam K.J., Kutzner H., Cho K-H., Aiba S., Bröcker E-B., LeBoit P.E., Pinkel D., Bastian B.C. Distinct sets of genetic alterations in melanoma. N. Engl. J. Med. 2005; 353 (20): 2135–47. https://doi.org/10.1056/NEJMoa050092
  50. Diaz-Martinez M., Benito-Jardón L., Alonso L., Koetz-Ploch L., Hernando E., Teixidó J. miR-204-5p and miR-211-5p contribute to BRAF inhibitor resistance in melanoma. Cancer Res. 2018; 78 (4): 1017–30.