МИКРОБИОТА И МЕЛАТОНИН В СИСТЕМЕ «МАТЬ–ПЛАЦЕНТА–ПЛОД»

DOI: https://doi.org/10.29296/24999490-2021-01-02

И.И. Евсюкова ФГБНУ «НИИ акушерства, гинекологии и репродуктологии им. Д.О. Отта», Российская Федерация,199034, Санкт-Петербург, Менделеевская линия, д. 3 E-mail: eevs@yandex.ru

В обзоре представлены данные литературы, раскрывающие механизм взаимного влияния микробиоты и мелатонина в единой системе «мать–плацента–плод». Показано многообразие выполняемых микробиотой функций, обеспеченных наличием коммуникаций между различными бактериальными экосистемами, их сбалансированным взаимодействием, а также ключевой ролью мелатонина в сохранении гомеостаза организма через контроль состава и жизнедеятельности микробиома. Существование циркадного ритма внутри комменсальных бактерий является ответом на эндокринный сигнал – мелатонин, который регулируется циркадными часами хозяина. Приведены результаты экспериментальных и клинических исследований, свидетельствующие об изменении в процессе беременности состава кишечной, плацентарной и вагинальной микробиоты. Закономерность перестройки состава микробиома определяется значительным возрастанием у здоровой беременной женщины продукции мелатонина, что подтверждает его ключевую роль в сохранении гомеостаза организма через контроль состава и жизнедеятельности микробиома, а также в создании оптимальных условий для благоприятного исхода беременности для матери и плода. При нарушении циркадной продукции мелатонина у беременной наблюдается дисбиоз микробиоты и развитие осложнений в единой системе «мать–плацента–плод». Прогнозирование и профилактика этих нарушений заключается в применении данным пациентам на этапе планирования семьи превентивной терапии с использованием мелатонина.
Ключевые слова: 
микробиота, беременность, плацента, плод
Для цитирования: 
Евсюкова И.И. МИКРОБИОТА И МЕЛАТОНИН В СИСТЕМЕ «МАТЬ–ПЛАЦЕНТА–ПЛОД». Молекулярная медицина, 2021; (1): -https://doi.org/10.29296/24999490-2021-01-02

Список литературы: 
  1. Ley R.E., Peterson D.A., Gordon J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell. 2006; 124 (4): 837–48. https://doi.org/10.1016/j.cell.2006.02.017.
  2. Lozupone C.A., Stombaugh J.I., Gordon J.I, Jansson J.K., Knight R. Diversity, stability and resilience of the human gut microbiota. Nature. 2012; 489 (7415): 220–30. https://doi.org/10.1038/nature11550.
  3. Dave M., Higgins P.D., Middha S, Rioux K.P. The human gut microbiome: Current knowledge, challenges, and future directions. Transl Res. 2012; 160 (4): 246–57. https://doi.org/10.1016/j.trsl.2012.05.003.
  4. Zhao L. The gut microbiota and obesity: from correlation to causality. Nat Rev Microbiol. 2013; 11 (9): 639–47. https://doi.org/10.1038/nrmicro3089.
  5. Zheng X., Xie G., Zhao A., Zhao L., Yao C., Chiu N.H.L, Zhou Z., Bao Y.,Jia W.,Nicholson J.K., Jia W. The footprints of gut microbial-mammalian co-metabolism. J. Proteom Res. 2011; 10 (12): 5512–22. Https://doi.org/10.1021/pr207945.
  6. Farthing M.J.G. Bugs and the gut: an stable marriage. Best Pract Res Clin Gastroenterol. 2004; 18 (2): 233–9. https://doi.org/10.1016/j.bpg.2003.11.001.
  7. Canfora E.E., Jocken J.W., Blaak E.E. Short-chain fatty acids in control of body weight and insulin sensitivity. Nat Rev Endocrinol. 2015; 11 (10): 577–91. https://doi.org/10.1038/nrendo.2015.128.
  8. Sekirov I., Russell S.L., Antunes L.C., Finlay B.B. Gut microbiota in health and disease. Physiol Rev. 2010; 90 (3): 859–904. https://doi.org/10.1152/physrev.00045.2009.
  9. Stevens C.E., Hume I.D. Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiol. Rev. 1998; 78 (2): 393–427. https://doi.org/10.1152/physrev.1998.78.2.393.
  10. Dinan T.G, Cryan J.F. The microbiome-gut-brain axis in health and disease. Gastroenterol Clin. North Am. 2017; 46 (1): 77–89. https://doi.org/10.1016/j.gtc.2016.09.007.
  11. Ijssennagger N., Belzer C., Hooiveld G.J, Dekker J., van Mil S.W, Muller M., Kleerebezem M., van der Meer R. Gut microbiota facilitates dietary heme-induced epithelial hyperproliferation by opening the mucus barrier in colon. Proc Natl Acad Sci. USA. 2015; 112 (32): 10038–43. https://doi.org/10.1073/pnas.1507645112.
  12. Reinhardt C., Bergentall M., Greiner T.U., Schaffner F, Ostergren-Lunden G., Petersen L.C., Ruf W., Backhed F. Tissue factor and PAR1promote microbiota-induced intestinal vascular remodelling. Nature. 2012; 483 (7391): 627–31. https://doi.org/10.1038/nature10893.
  13. Littman D.R., Pamer E.G. Role of commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe. 2011; 10 (4): 311–23. https://doi.org/10.1016/j.chom.2011.10.004.
  14. Haase S., Haghikia A., Wilck N., Muller N., Linker R.A. Impacts of microbiome metabolites on immune regulation and autoimmunity. Immunology. 2018; 154 (2): 230–8. https://doi.org/10.1111/imm.12933.
  15. Bengmark S. Ecological control of the gastrointestinal tract. The role of probiotic flora. Gut. 1998; 42 (1): 2–7. https://doi.org/10.1136/gut.42.1.2.
  16. Clayton T.A., Baker D., Lindon J.C., Everett J.R., Nicholson J.K. Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci USA. 2009; 106 (34): 14728–33. https://doi.org/10.1073/pnas.0904489106.
  17. Yano J.M., Yu K., Donaldson G.P., Shastri G.G., Ann P., Ma L., Nagler C.R., Ismagilov R.F., Mazmanian S.K., Hsiao E.Y. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015; 161 (22): 264–76. https://doi.org/10.1016/j.cell.2015.02.047.
  18. Wang B., Zhang L., Zhu S.W., Zhang J.D., Duan L.P. Short chain fatty acids contribute to gut microbiota-induced promotion of colonic melatonin receptor expression. J. Biol. Regul Homeost Agents. 2019; 33 (3): 763–71. PMID 31204469.
  19. Agus A., Planchais., Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe. 2018; 23 (6): 716–24. https://doi.org/10.1015/j.chom.2018.05.003.
  20. Gao J., Хu K., Liu H., Liu G., Bai M., Peng C., Li T., Yin Y. Impact of the Gut Microbiota on Intestinal Immunity Mediated Tryptophan Metabolism. Front Cell Infect Microbiol. 2018; 6.8: 13. https://doi.org/10.3389/fcimb.2018.00013.
  21. Virtue A.T., McCright S.J., Wright J.M., Jimenez M.T., Mowel W.K. et al. The gut microbiota regulates white adipose tissue inflammation and obesity via a familymicroRNAS. Sci Transl Med. 2019; 11 (496) eaav1892. https://doi.org/10.1126/scitransmed.aav1892.
  22. Wang Y., Kasper L.H. The role of microbiome in central nervous system disorders. Brain Behav Immun. 2014; 38: 1–12. https://doi.org/10.1016/j.bbi.2013.12.015.
  23. Spielman L.J., Gibson D.L., Klegeris A. Unhealthy gut, unhealthy brain: The role of the intestinal microbiota in neurodegenerative diseases. Neurochem Int. 2018; 120: 149–63. https://doi.org/10.1016/j.neuint.2018.08.005.
  24. Wang H.X., Wang Y.P. Gut Microbiota-brain Axis. Chin Med J. 2016; 129 (19): 2373–80. https://doi.org/10.4103/0366-6999.190667
  25. Hardeland R. , Poeggeler B. Non-vertebrate Melatonin. J. Pineal Res. 2003; 34 (4): 233–41. https://doi.org/10.1034/j.1600-079x.2003.00040.x.
  26. Zhao D.,Yu Y.,Shen Y., Liu Q., Zhao Z., Sharma R., Reiter R.J. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Frontes Edocrinol. 2019; 10: 249. https://doi.org/10.3389/fendo.2019.00249.
  27. Tan D-X., Manchester L.C., Liu X., Rosales-Coral S.A., Acuna-Castroviejo D., Reiter R.J. Mitochondria and chloroplasts as the original sites of melatonin synthesis: a hypothesis related to melatonin’s primary function and evolution in eukaryotes. J. Pineal Res. 2013; 54 (2): 127–38. https://doi.org/10.1111/jpi.12026.
  28. Paulose J.K., Wright J.M., Patel A.G., Cassone V.M. Human Gut Bacteria Are Sensitive to Melatonin and Express Endogenous Circadian Rhythmicity. PLoS ONE. 2016; 11 (1): e0146643. https://doi.org/10.1371/journal.pone.0146643.
  29. Zarrinpar A., Chaix A., Yooseph S., Panda S. Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab. 2014; 20 (6): 1006–17. https://doi.org/10.1016/j.cmet.2014.11.008.
  30. Parkar S.G., Kalsbeek A., Cheeseman J. Potential Role for the Gut Microbiota in Modulating Host Circadian Rhythms and Metabolic Health. Microorganisms. 2019; 7 (2): 41. https://doi.org/10.3390/microorganisms7020041.
  31. 31. O’Neil D.S., Stewart C.J., Chu D.M., Goodspeed D.M., Gonzalez-Rodriguez P.J., Shope C.D., Aagaard K.M. Conditional Postnatal Deletion of the Neonatal Murine Hepatic Circadian Gene, Npas2., Alters the Gut Microbiome Following Restricted Feeding. Am. J. Obstet Gynecol. 2017; 217 (2): 218.e1–218.e15. doi:10.1016/j.ajog.2017.03.024.
  32. Thaiss C.A., Levy M., Korem T., Dohnalova L., Shapiro H., Jaitin D.A., David E., Winter D.R., Gury-BenAri M., Tatirovsky E. et al. Microbiota diurnal rhythmicity programs host transcriptome oscillations. Cell. 2016; 167 (6): 1495–510.e12. https://doi.org/10.1016/j.cell.2016.11.003.
  33. Liang H., FitzGerald G.A. Timing the Microbes: The Circadian Rhythm of the Gut Microbiome. J. Biol. Rhythms. 2017; 32 (6): 505–15. https://doi.org/10.1177/0748730417729066.
  34. Paulose J.K.,Cassone V.M. The melatonin – sensitive circadian clock of the enteric bacterium Enterobacter aerogenes. Gut Microbes. 2016; 7 (5): 424–7. https://doi.org/10.1080/19490976.2016.1208892.
  35. Anderson S.T., Paschos G.K. The role the microbiome in the regulation of the circadian clock and metabolism. Nutritional Epigenomics. 2019; 14: 231–48. https://doi.org/10.1016/B978-0-12816843-1.00015-1.
  36. Wu G., Tang W., He Y., Hu J., Gong S., He Z., Wei G., Li L., Jiang Y., Zhou H. Light exposure influences the diurnal oscillation of gut microbiota in mice. Biochem Biophys Res Commun. 2018; 501: 16–23. https://doi.org/10.1016/j.bbrc.2018.04.095.
  37. Chen C.Q., Fichna J., Bashashati M., Li Y.Y., Storr M.Distribution, function and physiological role of melatonin in the lower gut. World J. Gastroenterol. 2011; 17 (34): 3888–98. https://doi.org/10.3748/wjg.v17.i34.3888.
  38. Ma N., Zhang J., Reiter R.J., Ma X., Melatonin mediates mucosal immune cells, microbial metabolism and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation. Med Res Rev. 2020; 40 (2): 606–32. https://doi.org/10.1002/med.21628.
  39. Vaughn B.V., Rotolo S., Roth H.L. Circadian rhythm and sleep influences on digestive physiology and disorders. ChonoPhysiology and Therapy. 2014; 4: 67–77. https://doi.org/10.2147/CPT.S44806
  40. Gao T., Wang Z., Dong Y., Cao J., Lin R., Wang H., Yu Z., Chen Y. Role of melatonin in sleep deprivation-induced intestinal barrier dysfunction in mice. J. Pineal Res. 2019; 67 (1): e12574. https://doi.org/10.1111/jpi.12574..
  41. Ren W., Wang P., Yan J., Liu G., Zeng B., Hussain T., Peng C., Yin J., Li T., Wei H.,, Zhu G., Reiter R.J., Tan B., Yin Y. Melatonin alleviates weanling stress in mice: Involvement of intestinal microbiota. J. Pineal Res. 2018; 64 (2): e12448. https://doi.org/10.1111/jpi.12448.
  42. Konturek P.C., Brzozowski T., Konturek S.J. Stress and the gut: pathophysiology, clinical consequences, diagnostic approach and treatment options. J. Physiol Pharmacol. 2011; 62 (6): 591–9. PMID: 22314561.
  43. Xu P., Wang J., Hong F., Wang S., Jin X., Xue T., Jia L.,Zhai Y. Melatonin prevents obesity through modulation of gut microbiota in mice. J. Pinral Res. 2017; 62 (4): e12399. https://doi.org/10.1111/jpi.12399.
  44. Yin J., Li Y., Han H., Chen S., Gao J. et al.Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice. J. Pineal Res. 2018; 65 (4): e12524. https://doi.org/10.1111/jpi.12524.
  45. Yildirim A., Arabaci T.S., Sahin D., Bagriacik F., Kahraman M.M. et al.The effects of antibiotics and melatonin on hepato-intestinal inflammation and gut microbial dysbiosis induced by a short-term hight-fat diet consumption in rats. Br. J. Nutr. 2019; 122 (8): 841–55. https://doi.org/10.1017/S0007114519001466.
  46. Jing Y., Yang D., Bai F., Zhang C., Qin C. . Li D., Wang L. Yang M., Chen Z., Li J. Melatonin treatment Alleviates Spinal Cord Injury-Induced Gut Dysbiosis in Mice. J. Neurotrauma. 2019; 36 (18): 2646–64. https://doi.org/10.1089/neu.2018.6012.
  47. Koren O., Goodrich J.K., Cullender T.C., Spor A., Laitinen K., Bäckhed H.K., Gonzalez A., Werner J.J., Angenent L.T., Knight R., Bäckhed F., Isolauri E., Salminen S., Ley R.E. Host remodeling of the gut microbiome and metabolic changes during pregnancy. Cell. 2012; 150 (3): 470–80. https://doi.org/10.1016/j.cell.2012.07.008.
  48. Nuriel-Ohayon M., Neuman H.,†Koren O. Microbial Changes during Pregnancy, Birth, and Infancy. Frontes in Microbiology. 2016; 7: 1031. https://doi.org/10.3389/fmicb.2016.01031.
  49. Dahl C., Stanislawski M., Iszatt N., Mandal S., Lozupone C., Clemente J.C., Knight R., Stigum H., Eggesbø M. Gut microbiome of mothers delivering Bifidobacterium and Streptococcus. PLoS One. 2017; 12: e0184336. https://doi.org/10.1371/journal.pone.0184336.
  50. Kikuchi K., Ben Othman M., Sakamoto K. Sterilized bifidobacteria suppressed fat accumulation and blood glucose level. Biochem. Biophys. Res. Commun. 2018; 501 (4): 1041–7. https://doi.org/10.1016/j.bbrc.2018.05.105.
  51. Kim S.H., Huh C.S., Choi I.D., Jeong J.W., Ku H.K., Ra J.H., Kim T.Y., Kim G.B., Sim J.H., Ahn Y.T. The anti-diabetic activity of Bifidobacterium lactis HY8101 in vitro and in vivo. J. Appl. Microbiol. 2014; 117 (3): 834–45. https://doi.org/10.1111/jam.12573.
  52. Ruiz L., Delgado S. , Ruas-Madiedo P. , Sánchez B., Margolles A. Bifidobacteria and Their Molecular Communication with the Immune System. Front Microbiol. 2017; 8: 2345. https://doi.org/10.3389/fmicb.2017.02345.
  53. Nuriel-Ohayon M., Neuman H., Liv O., Belogolovsky A., Barsheshet Y. et al. Progesteron Increases Bifidobacterial Relative Abundance during Late Pregnancy. Cell Reports. 2019; 27 (3): 730–6. e3. https://doi.org/10.1016/j.celrep.2019.03.075.
  54. Bäckhed F., Roswall J., Peng Y., Feng Q., Jia H. et al. Dynamics and Stabilization of the Human Gut Microbiome during the First Year of Life. Cell Host Microbe. 2015; 17: 690–703. PMID: 25974306
  55. Turroni F., Milani C., Duranti S., Ferrario C., Lugli G.A., Mancabelli L., van Sinderen D., Ventura M. Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cell Mol Life Sci. 2017; 75 (1): 103–18. https://doi.org/10.1007/s00018-017-2672-0.
  56. Thomson P., Medina D.A. , Garrido D. Human Milk Oligosaccharides and Infant Gut Bifidobacteria: Molecular Strategies for Their UtilizationFood. Microbiol. 2018; 75: 37–46. https://doi.org/10.1016/j.fm.2017.09.001.
  57. Makino H., Kushiro A., Ishikawa E., Muylaert D., Kubota H., Sacai T., Oishi K., Martin R., Amor K.B., Oozeer R., Knol J., Tanaka R. Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus. sequencing typing and amplified fragment length polymorphism. Appl Environ Microbiol. 2011; 77 (19): 6788–93. https://doi.org/10.1128/AEM.05346-11.
  58. Fox C., Eichelberger K., Maternal microbiome and pregnancy outcome. Fertil Steril. 2015; 104 (6): 1358–63. https://doi.org/10.1016/j.fertnsterl.2015.09.037.
  59. Romero R., Hassan S.S., Gajer P., Tarca A.L., Fadrosh D.W. et al. The composition and stability of the vaginal microbiota of normal pregnant women is different from that of non-pregnant women. Microbiome 2014; 2: 4. PMID: 24735933.
  60. Kosti I., Lyalina S., Pollard K.S., Butte A.J., Sirota M. Meta-Analysis of Vaginal Microbiome Data Provides New Insights Into Preterm Birth. Front. Microbiol. 2020; 11: 476. https://doi.org/10.3389/fmicb.2020.00476.
  61. Donders G.G., Van Calsteren K., Bellen G., Reybrouck R., Van den Bosch T., Riphagen I., Van Lierde S. Predictive value for preterm birth of abnormal vaginal flora, bacterial vaginosis and aerobic vaginitis during the first trimester of pregnancy. BJOG Int J. Obstet Gynaecol. 2009; 116 (10): 1315–24. https://doi.org/10.1111/j.1471-0528.2009.02237.x.
  62. Petricevic L., Domig K.J., Nierscher F.J., Sandhofer M.J., Fidesser M., Krondorfer I., Husslein P., Kneifel W., Kiss H. Characterisation of the vaginal Lactobacillus microbiota associated with preterm delivery. Sci Rep. 2014; 4: 5136. https://doi.org/10.1038/srep05136.
  63. Aagaard K., Ma J., Antony K.M., Ganu R., Petrosino J., Versalovic J. The placenta harbors a unique microbiome. Sci Trans Med. 2014; 6 (237): 237ra65. https://doi.org/10.1126/scitranslmed.3008599.
  64. Steel J.H., Malatos S., Kennea N., Edwards A.D., Miles L., Dugfan P., Reynolds P.R., Feldman R.G., Sullivan M.H.F. Bacteria and inflammatory cells in fetal membranes do not always cause preterm labor. Pediatr Res. 2005; 57 (3): 404–11. https://doi.org/10.1203/01.PDR.0000153869.96337.90.
  65. Stout M.J., Conlon B., Landeau M., Lee I., Bower C., Zhao Q., Roehl K.A., Nelson D.M., Macones G.A., Musorecar I.U. Identification of intracellular bacteria in the basal plate of the human placenta in term and preterm gestations. Am. J. Obstet Gynecol. 2013; 208 (3): 226.e1-7. https://doi.org/10.1016/j.ajog.
  66. Cao B., Mysorekar I.U. Intracellular bacteria in placental basal plate localize to extravilloustrophoblasts. Placenta. 2014; 35 (2): 139–42. https://doi.org/10.1016/j.placenta. 2013.12.007.
  67. Seferovic M.D., Pace R.M., Carroll M., Belfort B., Major A.M., Chu D.M., Racusin D.A., Castro E.C.C., Muldrew K.L., Versalovic J., Aagaard K.M. Visualization of Microbes by 16S in Situ Hybridization in Term and Preterm Placentas without Intra amniotic Infection. Am. J. Obstet Gynecol. 2019; 22 (2): 146.e1–146.e23. https://doi.org/10.1016/j.ajog.2019.04.036.
  68. Pelzer E., Gomez-Arango L.F., Barrett H.L., Nitert M.D. Review: Maternal health and placental microbiome. Placenta. 2017; 54: 30–7. https://doi.org/10.1016/j.placenta.2015.12.003.
  69. Chu D.M., Valentine G.C., Seferovic M.D., Aagaard K.M., The Development of the Human Microbiome. Why Moms Matter. Gastroenterol Clin North Am. 2019; 48 (3): 357–5. https://doi.org/10.1016/j.gtc.2019.04.004.
  70. Nakamura N.Y., Tamura H., Kashida S., Takayama H., Yagamata Y., Karube A., Sugino N., Kato H. Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy. J. Pineal Res. 2001; 30 (1): 29–33. PMID 11168904.
  71. Kivela A. Serum melatonin during human pregnancy. Acta Endocrinol (Copengagen). 1991; 124 (3): 233–7. PMID 2011913.
  72. Reiter R.J., Tan D.X., Korkmaz A., Rosales-Corral S.A. Melatonin and stabile circadian rhythms optimize maternal, placental and fetal physiology. Hum. Reprod. Update. 2014; 20 (2): 293–307. https://doi.org/10.1093/humupd/dmt054.
  73. Sagrilo-Fagundes L., Soliman A., Vaillancourt C. Maternal and placental melatonin: actions and implication for successful pregnancies. Minerva Gynecol. 2014; 66 (3): 251–66. PMID24971781
  74. Akbarian A., Kazerani H.R., Mohri M., Raji A.R., Jamshidi A., Golan A.Exogenous melatonin improves growth performance intestinal microbiota, and morphology in temporarily feed restricted broilers. Livestock Science. 2014; 167: 400–7. https://doi.org/10.1016/j.livsci.2014.06.019.
  75. Rodriguez M., Wootla B., Anderson G. Multiple Sclerosis, Gut Microbiota and Permeability ROLE of Triptophan Catabolites, Depression and the Driving Down of Local Melatonin. Curr Pharmaceutic Design. 2016; 22 (40): 6134–41. https://doi.org/10.2174/1381612822666160915160520.
  76. Racz B., Duskova M., Starka L., Hainer V., Kunesova M. Links Between the Circadian Rhythm, Obesity and the Microbiom. Physiol Res. 2018; 67 (3): 409–20. https://doi.org/10.33549/physiolres.934020.
  77. Chiozza G., De Seta F., Olmos S., Sabato A., Migliuolo M. Pharmaceutical and food composition for the treatment of vaginal and intestinal dysbiosis. Patent Application Publication N US2020/0113954A1. Apr.16.2020.