Современные средства борьбы с SARS-CоV-2

DOI: https://doi.org/10.29296/24999490-2023-01-03

Н.В. Бобкова(1), Р.А. Полтавцева(2), А.В. Чаплыгина(1), В.Ф. Садыков(2), Г.Т. Сухих(2)
1-Институт биофизики клетки РАН – обособленное подразделение
ФГБУН ФИЦ Пущинский научный центр биологических исследований РАН,
Российская Федерация, 142290, Московская обл., Пущино, ул. Институтская, 3;
2-ФГБУ НМИЦ акушерства, гинекологии и перинатологии им. акад. В.И. Кулакова Минздрава России, Российская Федерация, 117198, Москва, ул. Академика Опарина, 4

Актуальность: COVID-19 – принятое название острого респираторного заболевания, вызванного коронавирусом SARS-CoV-2. Внезапность, скорость распространения, тяжесть и высокая летальность заболевания COVID-19 привели к тому, что многие лекарственные препараты, применяемые на начальном этапе пандемии, базировались на результатах экстренных клинических наблюдений, а не на данных преклинических и клинических исследований. Поэтому не вызывает сомнения актуальность систематизации эффективных терапевтических средств, предотвращающих тяжелое течение ковидной инфекции, снижающих смертность, в основе создания которых лежат фундаментальные знания не только биологии вируса, но и ответной реакции пациента, что требует масштабных исследований патогенеза и изучения предикторов возможного перехода заболевания в тяжелую и даже терминальную фазу. Цель: структурированное описание лекарственных средств, вакцин и подходов для лечения COVID-19, принятых в настоящее время. Материал и методы: проведен поиск в базе PubMed и научной электронной библиотеке eLIBRARY.RU. Отбор статей осуществлялся вручную. В данный обзор включены 69 источников, включая методические рекомендации Министерства здравоохранения Российской Федерации и данные текущих клинических испытаний. Результаты: систематизированы лекарственные средства, вакцины и подходы к лечению СOVID-19, принятые в настоящее время в разных странах с указанием эффективности и механизмов их действия, а также выявленных побочных эффектов, ограничивающих их применение у определенных групп больных.
Ключевые слова: 
COVID-19, SARS-CoV-2, лабораторные биомаркеры COVID-19, прогностические факторы
Для цитирования: 
Бобкова Н.В., Полтавцева Р.А., Чаплыгина А.В., Садыков В.Ф., Сухих Г.Т. Современные средства борьбы с SARS-CоV-2. Молекулярная медицина, 2023; (1): 16-29https://doi.org/10.29296/24999490-2023-01-03

Список литературы: 
  1. Cherry J.D. The chronology of the 2002–2003 SARS mini pandemic. Paediatric Respiratory Reviews. 2004; 5 (4): 262–9. DOI: https://doi.org/10.1016/j.prrv.2004.07.009.
  2. Li K., Wohlford-Lenane C.L., Channappanavar R., Park J.E., Earnest J.T., Bair T.B. et al. Mouse-adapted MERS coronavirus causes lethal lung disease in human DPP4 knockin mice. Proceedings of the National Academy of Sciences. 2017; 114 (15): 3119–28. DOI: 10.1073/pnas.1619109114.
  3. World Health Organization. WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020. [Internet] [cited 11 February 2020]. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020.
  4. World Health Organization. WHO Coronavirus (COVID-19) Dashboard | WHO Coronavirus (COVID-19) Dashboard With Vaccination Data. [Internet] [cited 11 February 2021]. Available from: https://covid19.who.int/
  5. Zhou P., Yang X. Lou, Wang X.G., Hu B., Zhang L., Zhang W. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020; 579 (7798): 270–3. DOI: 10.1038/S41586-020-2012-7.
  6. Hoffmann M., Kleine-Weber H., Schroeder S., Krüger N., Herrler T., Erichsen S. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020; 181 (2): 271–80.e8. DOI: 10.1016/J.CELL.2020.02.052.
  7. Hwang S.S., Lim J., Yu Z., Kong P., Sefik E., Xu H. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science (New York, NY). 2020; 367 (6483): 1255–60. DOI: 10.1126/SCIENCE.ABB2507.
  8. Xie X. dong, Chen J. zhu, Wang X. xiang, Zhu J. hua, Sun J., Tao M. et al. Cloning, expression and sequence analysis and tissue distribution of angiotensin-converting enzyme 2 (ACE2) gene in adult mice. Zhejiang Da Xue Xue Bao Yi Xue Ban = Journal of Zhejiang University Medical Sciences. 2005; 34 (1): 48–54. DOI: 10.3785/J.ISSN.1008-9292.2005.01.010.
  9. Gheblawi M., Wang K., Viveiros A., Nguyen Q., Zhong J.C., Turner A.J. et al. Angiotensin-Converting Enzyme 2: SARS-CoV-2 Receptor and Regulator of the Renin-Angiotensin System: Celebrating the 20th Anniversary of the Discovery of ACE2. Circulation Research. 2020; 126 (10): 1456–74. DOI: 10.1161/CIRCRESAHA.120.317015.
  10. Hoffmann M., Kleine-Weber H., Pöhlmann S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Molecular Cell. 2020; 78 (4): 779–84.e5. DOI: 10.1016/J.MOLCEL.2020.04.022.
  11. Coutard B., Valle C., de Lamballerie X., Canard B., Seidah N.G., Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade. Antiviral Research. 2020; 176. DOI: 10.1016/J.ANTIVIRAL.2020.104742.
  12. Clausen T.M., Sandoval D.R., Spliid C.B., Pihl J., Perrett H.R., Painter C.D. et al. SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell. 2020; 183 (4): 1043–57.e15. DOI: 10.1016/J.CELL.2020.09.033.
  13. Lu R., Zhao X., Li J., Niu P., Yang B., Wu H. et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet (London, England). 2020; 395 (10224): 565–74. DOI: 10.1016/S0140-6736(20)30251-8.
  14. Malik Y.A. Properties of Coronavirus and SARS-CoV-2. The Malaysian J. of Pathology. 2020; 42 (1): 3–11.
  15. Khailany R.A., Safdar M., Ozaslan M. Genomic characterization of a novel SARS-CoV-2. Gene Reports. 2020; 19: 100682. DOI: 10.1016/j.genrep.2020.100682.
  16. Masters P.S. The molecular biology of coronaviruses. Advances in Virus Research. 2006; 66: 193–292. DOI: 10.1016/S0065-3527(06)66005-3.
  17. Fehr A.R., Perlman S. Coronaviruses: an overview of their replication and pathogenesis. Methods in Molecular Biology (Clifton, NJ). 2015; 1282: 1–23. DOI: 10.1007/978-1-4939-2438-7_1.
  18. Ziegler C.G.K., Allon S.J., Nyquist S.K., Mbano I.M., Miao V.N., Tzouanas C.N. et al. SARS-CoV-2 Receptor ACE2 Is an Interferon-Stimulated Gene in Human Airway Epithelial Cells and Is Detected in Specific Cell Subsets across Tissues. Cell. 2020; 181 (5): 1016–35.e19. DOI: 10.1016/j.cell.2020.04.035.
  19. De Wit E., van Doremalen N., Falzarano D., Munster V.J. SARS and MERS: recent insights into emerging coronaviruses. Nature Reviews Microbiology. 2016; 14 (8): 523–34. DOI: 10.1038/nrmicro.2016.81.
  20. Prompetchara E., Ketloy C., Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pacific Journal of Allergy and Immunology. 2020; 38 (1): 1–9. DOI: 10.12932/AP-200220-0772.
  21. Choy E.H., De Benedetti F., Takeuchi T., Hashizume M., John M.R., Kishimoto T. Translating IL-6 biology into effective treatments. Nature Reviews Rheumatology. 2020; 16 (6): 335–45. DOI: 10.1038/S41584-020-0419-Z.
  22. Министерство Здравоохранения Российской Федерации. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). [Интернет] 6-я редакция. [обновлено 28 Апреля 2020]. Available from: https://static-1.rosminzdrav.ru/system/attachments/attaches/000/050/116/original/28042020_%D0%9CR_COVID-19_v6.pdf [Ministerstvo Zdravookhraneniya Rossijskoj Federacii. Vremennye metodicheskie rekomendacii. Profilaktika, diagnostika i lechenie novoj koronavirusnoj infekcii (COVID-19). [Internet] 6th ed. [update 28 April 2020]. Available from: https://static-1.rosminzdrav.ru/system/attachments/attaches/000/050/116/original/28042020_%D0%9CR_COVID-19_v6.pdff (in Russian)].
  23. Yoo J.S., Sasaki M., Cho S.X., Kasuga Y., Zhu B., Ouda R. et al. SARS-CoV-2 inhibits induction of the MHC class I pathway by targeting the STAT1-IRF1-NLRC5 axis. Nature Communications. 2021; 12 (1): 6602. DOI: 10.1038/s41467-021-26910-8.
  24. Qiu J. Covert coronavirus infections could be seeding new outbreaks. Nature. 2020. DOI: 10.1038/D41586-020-00822-X.
  25. Garcia-Fojeda B., González-Carnicero Z., De Lorenzo A., Minutti C.M., De Tapia L., Euba B. et al. Lung Surfactant Lipids Provide Immune Protection Against Haemophilus influenzae Respiratory Infection. Frontiers in Immunology. 2019; 10 (MAR). DOI: 10.3389/FIMMU.2019.00458.
  26. Buzhdygan T.P., DeOre B.J., Baldwin-Leclair A., McGary H., Razmpour R., Galie P.A. et al. The SARS-CoV-2 spike protein alters barrier function in 2D static and 3D microfluidic in vitro models of the human blood-brain barrier. BioRxiv : The Preprint Server for Biology. 2020. DOI: 10.1101/2020.06.15.150912.
  27. Vincent M.J., Bergeron E., Benjannet S., Erickson B.R., Rollin P.E., Ksiazek T.G. et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virology J. 2005; 2. DOI: 10.1186/1743-422X-2-69.
  28. Pardo J., Shukla A.M., Chamarthi G., Gupte A. The journey of remdesivir: from Ebola to COVID-19. Drugs in Context. 2020; 9. DOI: 10.7573/DIC.2020-4-14.
  29. Korber B., Fischer W.M., Gnanakaran S., Yoon H., Theiler J., Abfalterer W. et al. Tracking Changes in SARS-CoV-2 Spike: Evidence that D614G Increases Infectivity of the COVID-19 Virus. Cell. 2020; 182 (4): 812–27.e19. DOI: https://doi.org/10.1016/j.cell.2020.06.043.
  30. Hobernik D., Bros M. DNA Vaccines-How Far From Clinical Use? International J. of Molecular Sciences. 2018; 19 (11). DOI: 10.3390/ijms19113605.
  31. Pardi N., Hogan M.J., Porter F.W., Weissman D. mRNA vaccines – a new era in vaccinology. Nature Reviews Drug Discovery. 2018; 17 (4): 261–79. DOI: 10.1038/nrd.2017.243.
  32. Callaway E. The race for coronavirus vaccines: a graphical guide. Nature. 2020; 580 (7805): 576–7. DOI: 10.1038/d41586-020-01221-y.
  33. Grubaugh N.D., Hanage W.P., Rasmussen A.L. Making Sense of Mutation: What D614G Means for the COVID-19 Pandemic Remains Unclear. Cell. 2020; 182 (4): 794–5. DOI: 10.1016/j.cell.2020.06.040.
  34. Miller A., Reandelar M., Fasciglione K., Roumenova V., Li Y., Otazu G. Correlation between universal BCG vaccination policy and reduced morbidity and mortality for COVID-19: an epidemiological study. 2020. DOI: 10.1101/2020.03.24.20042937.
  35. World Health Organization. An international randomised trial of candidate vaccines against COVID-19. [Internet] [cited 28 May 2021]. Available from: https://www.who.int/publications/i/item/an-international-randomised-trial-of-candidate-vaccines-against-covid-19
  36. Fiolet T., Kherabi Y., MacDonald C.J., Ghosn J., Peiffer-Smadja N. Comparing COVID-19 vaccines for their characteristics, efficacy and effectiveness against SARS-CoV-2 and variants of concern: a narrative review. Clinical Microbiology and Infection : The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases. 2022; 28 (2): 202–21. DOI: 10.1016/j.cmi.2021.10.005.
  37. Jones I., Roy P. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet (London, England). 2021; 397 (10275): 642–3. DOI: 10.1016/S0140-6736(21)00191-4.
  38. Komissarov A.A., Dolzhikova I.V., Efimov G.A., Logunov D.Y., Mityaeva O., Molodtsov I.A. Boosting of the SARS-CoV-2-Specific Immune Response after Vaccination with Single-Dose Sputnik Light Vaccine. J. of Immunology (Baltimore, Md : 1950). 2022; 208 (5): 1139–45. DOI: 10.4049/JIMMUNOL.2101052.
  39. Министерство Здравоохранения Российской Федерации. Государственный реестр лекарственных средств. [Интернет]. [обновлено 2022]. Available from: https://minzdrav.gov.ru/opendata/7707778246-grls/visual [Ministerstvo Zdravookhraneniya Rossijskoj Federacii. Gosudarstvennyj reestr lekarstvennykh sredstv. [Internet]. [update 2022]. Available from: https://minzdrav.gov.ru/opendata/7707778246-grls/visual (in Russian)].
  40. Hassine Hadj, I. Covid-19 vaccines and variants of concern: a review. Rev Med Virol. 2022; 32 (4): e2313. https://doi.org/10.1002/rmv.2313
  41. Kozlovskaya L.I., Piniaeva A.N., Ignatyev G.M., Gordeychuk I.V., Volok V.P., Rogova Y.V. et al. Long-term humoral immunogenicity, safety and protective efficacy of inactivated vaccine against COVID-19 (CoviVac) in preclinical studies. Emerging Microbes & Infections. 2021; 10 (1): 1790–806. DOI: 10.1080/22221751.2021.1971569.
  42. Jahan N., Rahman F.I., Saha P., Ether S.A., Roknuzzaman A.S.M., Sarker R. et al. Side Effects Following Administration of the First Dose of Oxford-AstraZeneca’s Covishield Vaccine in Bangladesh: A Cross-Sectional Study. Infectious Disease Reports. 2021; 13 (4): 888. DOI: 10.3390/IDR13040080.
  43. Polack F.P., Thomas S.J., Kitchin N., Absalon J., Gurtman A., Lockhart S. et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. The New England J. of Medicine. 2020; 383 (27): 2603–15. DOI: 10.1056/NEJMOA2034577.
  44. Jackson L.A., Anderson E.J., Rouphael N.G., Roberts P.C., Makhene M., Coler R.N. et al. An mRNA Vaccine against SARS-CoV-2 – Preliminary Report. The New England J. of Medicine. 2020; 383 (20): 1920–31. DOI: 10.1056/NEJMOA2022483.
  45. Sadoff J., Le Gars M., Shukarev G., Heerwegh D., Truyers C., de Groot A.M. et al. Interim Results of a Phase 1-2a Trial of Ad26.COV2.S Covid-19 Vaccine. The New England J. of Medicine. 2021; 384 (19): 1824–35. DOI: 10.1056/NEJMOA2034201.
  46. Министерство Здравоохранения Российской Федерации. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). [Интернет] 15-я редакция. [обновлено 22 February 2022]. Available from: https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/392/original/%D0%92%D0%9C%D0%A0_COVID-19_V15.pdf [Ministerstvo Zdravookhraneniya Rossijskoj Federacii. Vremennye metodicheskie rekomendacii. Profilaktika, diagnostika i lechenie novoj koronavirusnoj infekcii (COVID-19). [Internet] 15th ed. [update 22 February 2022]. Available from:https://static-0.minzdrav.gov.ru/system/attachments/attaches/000/059/392/original/%D0%92%D0%9C%D0%A0_COVID-19_V15.pdf (in Russian)].
  47. Feikin D.R., Higdon M.M., Abu-Raddad L.J., Andrews N., Araos R., Goldberg Y. et al. Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression. The Lancet. 2022; 399 (10328): 924–44. DOI: 10.1016/S0140-6736(22)00152-0.
  48. Mair-Jenkins J., Saavedra-Campos M., Baillie J.K., Cleary P., Khaw F.M., Lim W.S. et al. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory meta-analysis. The J. of Infectious Diseases. 2015; 211 (1): 80–90. DOI: 10.1093/INFDIS/JIU396.
  49. Levin M.J., Ustianowski A., De Wit S., Launay O., Avila M., Templeton A. et al. Intramuscular AZD7442 (Tixagevimab-Cilgavimab) for Prevention of Covid-19. The New England J. of Medicine. 2022; 386 (23): 2188–200. DOI: 10.1056/NEJMOA2116620.
  50. Жирнов О.П., Чернышова А.И.. Фавипиравир: скрытая опасность мутагенного действия. Журнал Микробиологии, Эпидемиологии и Иммунобиологии. 2021; 98 (2): 213–20. DOI: 10.36233/0372-9311-114. [Zhirnov O.P., Chernyshova A.I. Favipiravir: skrytaya opasnost’ mutagennogo dejstviya. Zhurnal Mikrobiologii, Ehpidemiologii i Immunobiologii. 2021; 98 (2): 213–20. DOI: 10.36233/0372-9311-114 (in Russian)].
  51. Merck and Ridgeback’s Investigational Oral Antiviral Molnupiravir Reduced the Risk of Hospitalization or Death by Approximately 50 Percent Compared to Placebo for Patients with Mild or Moderate COVID-19 in Positive Interim Analysis of Phase 3 Study – Merck.com.
  52. National Institutes of Health. COVID-19 Treatment Guidelines Remdesivir. [Internet] [Updated: 8 August 2022]. Available from: https://www.covid19treatmentguidelines.nih.gov/therapies/antiviral-therapy/remdesivir/#:~:text=In%20high%2Drisk%2C%20nonhospitalized%20patients,hospital%20discharge%2C%20whichever%20comes%20first.&text=See%20Table%204d%20for%20more%20information.
  53. Khaitov M., Nikonova A., Shilovskiy I., Kozhikhova K., Kofiadi I., Vishnyakova L. et al. Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation. Allergy. 2021; 76 (9): 2840–54. DOI: 10.1111/all.14850.
  54. Понежева Ж.Б., Гришаева А.А., Маннанова И.В., Купченко А.Н., Яцышина С.Б., Краснова С.В., Малиновская В.В. АВ. Профилактическая эффективность рекомбинантного интерферона альфа-2b в условиях пандемии COVID-19. Лечащий Врач. 2020; 12: 56–60. DOI: 10.26295/OS.2020.29.66.011 [Ponezheva ZH.B., Grishaeva A.A., Mannanova I.V., Kupchenko A.N., Yacyshina S.B., Krasnova S.V., Malinovskaya V.V. AV. Profilakticheskaya ehffektivnost’ rekombinantnogo interferona alfa-2b v usloviyakh pandemii COVID-19. Lechashchij Vrach. 2020; 12: 56–60. DOI: 10.26295/OS.2020.29.66.011 (in Russian)].
  55. Ленева И.А., Пшеничная Н.Ю., Булгакова В.А. Умифеновир и коронавирусные инфекции: обзор результатов исследований и опыта применения в клинической практике. Терапевтический архив. 2020; 92 (11): 91–7. DOI: 10.26442/00403660.2020.11.000713. [Leneva I.A., Pshenichnaya N.YU., Bulgakova V.A. Umifenovir i koronavirusnye infekcii: obzor rezul’tatov issledovanij i opyta primeneniya v klinicheskoj praktike. Terapevticheskij arkhiv. 2020; 92 (11): 91–7. DOI: 10.26442/00403660.2020.11.000713. (in Russian)].
  56. Dougan M., Azizad M., Mocherla B., Gottlieb R.L., Chen P., Hebert C. et al. A Randomized, Placebo-Controlled Clinical Trial of Bamlanivimab and Etesevimab Together in High-Risk Ambulatory Patients With COVID-19 and Validation of the Prognostic Value of Persistently High Viral Load. Clinical Infectious Diseases : An Official Publication of the Infectious Diseases Society of America. 2022; 75 (1): 440–9. DOI: 10.1093/cid/ciab912.
  57. Heo Y.A. Sotrovimab: First Approval. Drugs. 2022; 82 (4): 477–84. DOI: 10.1007/s40265-022-01690-7.
  58. GlaxoSmithKline L.L.C. Fact sheet for healthcare providers emergency use authorization (eua) of sotrovimab [Internet] [revised March 2022]. Available from: https://www.fda.gov/media/149534/download
  59. Kim C., Ryu D.K., Lee J., Kim Y.I., Seo J.M., Kim Y.G. et al. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nature Communications. 2021; 12 (1): 288. DOI: 10.1038/s41467-020-20602-5.
  60. Syed Y.Y. Regdanvimab: First Approval. Drugs. 2021; 81 (18): 2133–7. DOI: 10.1007/s40265-021-01626-7.
  61. Millet J.K., Whittaker G.R. Host cell proteases: Critical determinants of coronavirus tropism and pathogenesis. Virus Research. 2015; 202: 120–34. DOI: 10.1016/J.VIRUSRES.2014.11.021.
  62. Imai Y., Kuba K., Rao S., Huan Y., Guo F., Guan B. et al. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005; 436 (7047): 112–6. DOI: 10.1038/NATURE03712.
  63. Kuba K., Imai Y., Rao S., Gao H., Guo F., Guan B. et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine. 2005; 11 (8): 875–9. DOI: 10.1038/NM1267.
  64. Dobay O., Laub K., Stercz B., Kéri A., Balázs B., Tóthpál A. et al. Bicarbonate Inhibits Bacterial Growth and Biofilm Formation of Prevalent Cystic Fibrosis Pathogens. Frontiers in Microbiology. 2018; 9 (SEP). DOI: 10.3389/FMICB.2018.02245.
  65. Министерство Здравоохранения Российской Федерации. Временные методические рекомендации. Профилактика, диагностика и лечение новой коронавирусной инфекции (COVID-19). [Интернет] 16-я редакция. [обновлено 18 Августа 2022]. Available from: https://static.edu.rosminzdrav.ru/fc0001/fdpo/decanat/NMO_MZ/TEOC/u9/VremMetRec/%D0%92%D0%9C%D0%A0_COVID-19_V16.pdf [Ministerstvo Zdravookhraneniya Rossijskoj Federacii. Vremennye metodicheskie rekomendacii. Profilaktika, diagnostika i lechenie novoj koronavirusnoj infekcii (COVID-19). [Internet] 16th ed. [update 18 Auguts 2022]. Available from: https://static.edu.rosminzdrav.ru/fc0001/fdpo/decanat/NMO_MZ/TEOC/u9/VremMetRec/%D0%92%D0%9C%D0%A0_COVID-19_V16.pdf (in Russian)].
  66. Oudit G.Y., Kassiri Z., Patel M.P., Chappell M., Butany J., Backx P.H. et al. Angiotensin II-mediated oxidative stress and inflammation mediate the age-dependent cardiomyopathy in ACE2 null mice. Cardiovascular Research. 2007; 75 (1): 29–39. DOI: 10.1016/J.CARDIORES.2007.04.007.
  67. Morris G.M., Lim-Wilby M. Molecular docking. Methods in Molecular Biology (Clifton, NJ). 2008; 443: 365–82. DOI: 10.1007/978-1-59745-177-2_19.
  68. Gu C., Wu Y., Guo H., Zhu Y., Xu W., Wang Y. et al. Protoporphyrin IX and verteporfin potently inhibit SARS-CoV-2 infection in vitro and in a mouse model expressing human ACE2. Science Bulletin. 2021; 66 (9): 925–36. DOI: 10.1016/j.scib.2020.12.005.
  69. Наука из первых рук. Аптамеры – продвинутое ДНК-оружие против SARS-CoV -2. [Internet] [опубликовано 11 Февраля 2022] Available from: https://scfh.ru/news/aptamery-prodvinutoe-dnk-oruzhie-protiv-sars-cov-2/ [Nauka iz pervykh ruk. Aptamery – prodvinutoe DNK-oruzhie protiv SARS-CoV-2. [Internet] [cited 11 February 2022] Available from: https://scfh.ru/news/aptamery-prodvinutoe-dnk-oruzhie-protiv-sars-cov-2/(in Russian)].