Иммунное микроокружение при гепатоцеллюлярной карциноме: современные представления и роль блокады иммунных контрольных точек

DOI: https://doi.org/10.29296/24999490-2024-01-01

Е.Л. Буеверова(1), О.Ю. Зольникова(1), М.А. Пальцев(2)
1-Первый Московский государственный медицинский
университет им. И.М. Сеченова (Сеченовский Университет),
Российская Федерация, 119991 Москва, ул. Трубецкая, д. 8/2;
2-Московский государственный университет им. М.В. Ломоносова,
Российская Федерация, 119234, Москва, Ленинские горы, д. 1

Гепатоцеллюлярная карцинома (ГЦК) является наиболее распространенной первичной злокачественной опухолью печени. Специфичность иммунной микросреды органа ограничивает возможности традиционных терапевтических и хирургических подходов к лечению, поэтому одной из важнейших задач современной медицины является поиск новых терапевтических мишеней с прицелом на микроокружение опухоли. Внедрение в клиническую практику ингибиторов контрольных точек расширяет иммунотерапевтические возможности борьбы с раком печени (РП). Цель нашего обзора – обобщить имеющиеся данные об иммунном микроокружении печени при гепатоцеллюлярной карциноме и представить достижения в иммунотерапии РП с помощью блокады иммунных контрольных точек. Материал и методы. Проведен анализ основных зарубежных и отечественных источников по базам данных PubMed/Medline, ClinicalTrials.gov за последние 5 лет. Результаты. По заболеваемости и смертности гепатоцеллюлярная карцинома входит в перечень самых частых злокачественных новообразований в мире и прогнозы на ближайшие десятилетия неутешительны. Современные подходы к иммунотерапии с учетом микроокружения опухоли ассоциированы с лучшими показателями выживаемости и профилем безопасности, чем стандартная терапия. Заключение. Эффективность ингибиторов контрольных точек в качестве монотерапии и комбинированных стратегий вселяет надежду на улучшение прогноза и качества жизни пациентов с неоперабельной ГЦК.
Ключевые слова: 
епатоцеллюлярная карцинома, микроокружение опухоли, блокада иммунных контрольных точек
Для цитирования: 
Буеверова Е.Л., Зольникова О.Ю., Пальцев М.А. Иммунное микроокружение при гепатоцеллюлярной карциноме: современные представления и роль блокады иммунных контрольных точек . Молекулярная медицина, 2024; (1): 3-12https://doi.org/10.29296/24999490-2024-01-01

Список литературы: 
  1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021; 71 (3): 209–49. DOI: 10.3322/caac.21660.
  2. Rumgay H., Arnold M., Ferlay J., Lesi O., Cabasag C.J., Vignat J., Laversanne M., McGlynn K.A., Soerjomataram I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022; 77 (6): 1598–606. DOI: 10.1016/j.jhep.2022.08.021.
  3. Xing R., Gao J., Cui Q., Wang Q. Strategies to Improve the Antitumor Effect of Immunotherapy for Hepatocellular Carcinoma. Front Immunol. 2021; 12: 783236. DOI: 10.3389/fimmu.2021.783236.
  4. Llovet J.M., Kelley R.K., Villanueva A., Singal A.G., Pikarsky E., Roayaie S., Lencioni R., Koike K., Zucman-Rossi J., Finn R.S. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021; 7 (1): 6. DOI: 10.1038/s41572-020-00240-3.
  5. Michael L. Cheng, Diana Nakib, Catia T. Perciani, Sonya A. MacParland; The immune niche of the liver. Clin Sci (Lond) 29 October. 2021; 135 (20): 2445–66. DOI: https://doi.org/10.1042/CS20190654.
  6. Gottwick C., Carambia A., Herkel J. Harnessing the liver to induce antigen-specific immune tolerance. Semin Immunopathol. 2022; 44: 475–84. https://doi.org/10.1007/s00281-022-00942-8.
  7. Parlar Y.E., Ayar S.N., Cagdas D., Balaban Y.H. Liver immunity, autoimmunity, and inborn errors of immunity. World J. Hepatol. 2023; 15 (1): 52–67. DOI: 10.4254/wjh.v15.i1.52.
  8. Rizvi S., Wang J., El-Khoueiry A.B. Liver Cancer Immunity. Hepatology. 2021; 73 (1): 86–103. DOI: 10.1002/hep.31416.
  9. Yang Z.J. Innate immunity and early liver inflammation. Front Immunol. 2023; 14: 1175147. DOI: 10.3389/fimmu.2023.1175147.
  10. Mikulak J., Bruni E., Oriolo F., Di Vito C., Mavilio D. Hepatic Natural Killer Cells: Organ-Specific Sentinels of Liver Immune Homeostasis and Physiopathology. Front Immunol. 2019; 10: 946. DOI: 10.3389/fimmu.2019.00946.
  11. Zheng M., Tian Z. Liver-Mediated Adaptive Immune Tolerance. Front Immunol. 2019; 10: 2525. DOI: 10.3389/fimmu.2019.02525.
  12. Sas Z., Cendrowicz E., Weinhäuser I., Rygiel T.P. Tumor Microenvironment of Hepatocellular Carcinoma: Challenges and Opportunities for New Treatment Options. Int J. Mol. Sci. 2022; 23 (7): 3778. DOI: 10.3390/ijms23073778.
  13. Lu C., Rong D., Zhang B., Zheng W., Wang X., Chen Z., Tang W. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol. Cancer. 2019; 18 (1): 130. DOI: 10.1186/s12943-019-1047-6.
  14. Wang S.Z., Lee S.D., Sarkar D., Lee H.M., Khan A., Bhati C., Sharma A., Kumaran V., Bruno D., Cotterell A., Levy M.F. Immunological characterization of hepatocellular carcinoma. Hepatoma Research. 2021; 7: 6. http://dx.doi.org/10.20517/2394-5079.2020.113.
  15. Xu X., Tan Y., Qian Y., Xue W., Wang Y., Du J., Jin L., Ding W. Clinicopathologic and prognostic significance of tumor-infiltrating CD8+ T-cells in patients with hepatocellular carcinoma: A meta-analysis. Medicine (Baltimore). 2019; 98 (2): e13923. DOI: 10.1097/MD.0000000000013923.
  16. Stulpinas R., Zilenaite-Petrulaitiene D., Rasmusson A., Gulla A., Grigonyte A., Strupas K., Laurinavicius A. Prognostic Value of CD8+ Lymphocytes in Hepatocellular Carcinoma and Perineoplastic Parenchyma Assessed by Interface Density Profiles in Liver Resection Samples. Cancers (Basel). 2023; 15 (2): 366. DOI: 10.3390/cancers15020366.
  17. Mossanen J.C., Kohlhepp M., Wehr A., Krenkel O., Liepelt A., Roeth A.A., Möckel D., Heymann F., Lammers T., Gassler N., Hermann J., Jankowski J., Neumann U.P., Luedde T., Trautwein C., Tacke F. CXCR6 Inhibits Hepatocarcinogenesis by Promoting Natural Killer T- and CD4+ T-Cell-Dependent Control of Senescence. Gastroenterology. 2019; 156 (6): 1877–89.e4. DOI: 10.1053/j.gastro.2019.01.247.
  18. Zander R., Schauder D., Xin G., Nguyen C., Wu X., Zajac A., Cui W. CD4+ T Cell Help Is Required for the Formation of a Cytolytic CD8+ T Cell Subset that Protects against Chronic Infection and Cancer. Immunity. 2019; 51 (6): 1028–42.e4. DOI: 10.1016/j.immuni.2019.10.009.
  19. Yu S., Wang Y., Hou J., Li W., Wang X., Xiang L., Tan D., Wang W., Jiang L., Claret F.X., Jiao M., Guo H. Tumor-infiltrating immune cells in hepatocellular carcinoma: Tregs is correlated with poor overall survival. PLoS One. 2020; 15 (4): e0231003. DOI: 10.1371/journal.pone.0231003.
  20. Largeot A., Pagano G., Gonder S., Moussay E., Paggetti J. The B-side of Cancer Immunity: The Underrated Tune. Cells. 2019; 8 (5): 449. DOI: 10.3390/cells8050449.
  21. Qin M., Wang D., Fang Y., Zheng Z., Liu X., Wu F., Wang L., Li X., Hui B., Ma S., Tang W., Pan X. Current Perspectives on B Lymphocytes in the Immunobiology of Hepatocellular Carcinoma. Front Oncol. 2021; 11: 647854. DOI: 10.3389/fonc.2021.647854.
  22. Zhang Z., Ma L., Goswami S., Ma J., Zheng B., Duan M., Liu L., Zhang L., Shi J., Dong L., Sun Y., Tian L., Gao Q., Zhang X. Landscape of infiltrating B cells and their clinical significance in human hepatocellular carcinoma. Oncoimmunology. 2019; 8 (4): e1571388. DOI: 10.1080/2162402X.2019.1571388.
  23. Zhao M., Huang H., He F., Fu X. Current insights into the hepatic microenvironment and advances in immunotherapy for hepatocellular carcinoma. Front Immunol. 2023; 14: 1188277. DOI: 10.3389/fimmu.2023.1188277.
  24. Hosseinzadeh F., Ai J., Ebrahimi-Barough S., Seyhoun I., Hajifathali A., Muhammadnejad S., Hosseinzadeh F., Shadnoush M., Dabiri Oskouei F., Verdi J. Natural Killer Cell Expansion with Autologous Feeder Layer and Anti-CD3 Antibody for Immune Cell Therapy of Hepatocellular Carcinoma. Asian Pac J. Cancer Prev. 2019; 20 (12): 3797–803. DOI: 10.31557/APJCP.2019.20.12.3797.
  25. Sun H., Huang Q., Huang M., Wen H., Lin R., Zheng M., Qu K., Li K., Wei H., Xiao W., Sun R., Tian Z., Sun C. Human CD96 Correlates to Natural Killer Cell Exhaustion and Predicts the Prognosis of Human Hepatocellular Carcinoma. Hepatology. 2019; 70 (1): 168–83. DOI: 10.1002/hep.30347.
  26. Sung P.S. Crosstalk between tumor-associated macrophages and neighboring cells in hepatocellular carcinoma. Clin. Mol. Hepatol. 2022; 28 (3): 333–50. DOI: 10.3350/cmh.2021.0308.
  27. Huang Y., Ge W., Zhou J., Gao B., Qian X., Wang W. The Role of Tumor Associated Macrophages in Hepatocellular Carcinoma. J. Cancer. 2021; 12 (5): 1284–94. DOI: 10.7150/jca.51346.
  28. Cheng K., Cai N., Zhu J., Yang X., Liang H., Zhang W. Tumor-associated macrophages in liver cancer: From mechanisms to therapy. Cancer Commun (Lond). 2022; 42 (11): 1112–40. DOI: 10.1002/cac2.12345.
  29. Peng X., He Y., Huang J., Tao Y., Liu S. Metabolism of Dendritic Cells in Tumor Microenvironment: For Immunotherapy. Front Immunol. 2021; 12: 613492. DOI: 10.3389/fimmu.2021.613492.
  30. Peterson E.E., Barry K.C. The Natural Killer-Dendritic Cell Immune Axis in Anti-Cancer Immunity and Immunotherapy. Front Immunol. 2021; 11: 621254. DOI: 10.3389/fimmu.2020.621254.
  31. Santos P.M., Menk A.V., Shi J., Tsung A., Delgoffe G.M., Butterfield L.H. Tumor-Derived α-Fetoprotein Suppresses Fatty Acid Metabolism and Oxidative Phosphorylation in Dendritic Cells. Cancer Immunol Res. 2019; 7 (6): 1001–12. DOI: 10.1158/2326-6066.CIR-18-0513.
  32. Zhou Z.J., Xin H.Y., Li J., Hu Z.Q., Luo C.B., Zhou S.L. Intratumoral plasmacytoid dendritic cells as a poor prognostic factor for hepatocellular carcinoma following curative resection. Cancer Immunol Immunother. 2019; 68 (8): 1223–33. DOI: 10.1007/s00262-019-02355-3.
  33. Niu Z.S., Wang W.H., Niu X.J. Recent progress in molecular mechanisms of postoperative recurrence and metastasis of hepatocellular carcinoma. World J. Gastroenterol. 2022; 28 (46): 6433–77. DOI: 10.3748/wjg.v28.i46.6433.
  34. Lurje I., Hammerich L., Tacke F. Dendritic Cell and T Cell Crosstalk in Liver Fibrogenesis and Hepatocarcinogenesis: Implications for Prevention and Therapy of Liver Cancer. Int J. Mol. Sci. 2020; 21 (19): 7378. DOI: 10.3390/ijms21197378.
  35. Barry S.T., Gabrilovich D.I., Sansom O.J., Campbell A.D., Morton J.P. Therapeutic targeting of tumour myeloid cells. Nat Rev Cancer. 2023; 23 (4): 216–37. DOI: 10.1038/s41568-022-00546-2.
  36. Ma T., Renz B.W., Ilmer M., Koch D., Yang Y., Werner J., Bazhin A.V. Myeloid-Derived Suppressor Cells in Solid Tumors. Cells. 2022; 11 (2): 310. DOI: 10.3390/cells11020310
  37. Limagne E., Richard C., Thibaudin M., Fumet J.-D., Truntzer C., Lagrange A., Favier L., Coudert B., Ghiringhelli F. Tim-3/galectin-9 pathway and mMDSC control primary and secondary resistances to PD-1 blockade in lung cancer patients. Oncoimmunology. 2019; 8: e1564505. DOI: 10.1080/2162402X.2018.1564505.
  38. An Y., Xu S., Liu Y., Xu X., Philips C.A., Chen J., Méndez-Sánchez N., Guo X., Qi X. Role of Galectins in the Liver Diseases: A Systematic Review and Meta-Analysis. Front Med (Lausanne). 2021; 8:744518. DOI: 10.3389/fmed.2021.744518.
  39. Zhang X., Fu X., Li T., Yan H. The prognostic value of myeloid derived suppressor cell level in hepatocellular carcinoma: A systematic review and meta-analysis. PLoS One. 2019; 14 (12): e0225327. DOI: 10.1371/journal.pone.0225327.
  40. Kundu D., Kennedy L., Meadows V., Baiocchi L., Alpini G., Francis H. The Dynamic Interplay Between Mast Cells, Aging/Cellular Senescence, and Liver Disease. Gene Expr. 2020; 20 (2): 77–88. DOI: 10.3727/105221620X15960509906371.
  41. Huang S., Wu H., Luo F., Zhang B., Li T., Yang Z., Ren B., Yin W., Wu D., Tai S. Exploring the role of mast cells in the progression of liver disease. Front Physiol. 2022; 13: 964887. DOI: 10.3389/fphys.2022.964887.
  42. Komi D.E.A., Redegeld F.A. Role of Mast Cells in Shaping the Tumor Microenvironment. Clin Rev Allergy Immunol. 2020; 58 (3): 313–25. DOI: 10.1007/s12016-019-08753-w.
  43. Zhao J., Hou Y., Yin C., Hu J., Gao T., Huang X., Zhang X., Xing J., An J., Wan S., Li J. Upregulation of histamine receptor H1 promotes tumor progression and contributes to poor prognosis in hepatocellular carcinoma. Oncogene. 2020; 39 (8): 1724–38. DOI: 10.1038/s41388-019-1093-y
  44. Yu D., Zhao J., Wang Y., Hu J., Zhao Q., Li J., Zhu J. Upregulated histamine receptor H3 promotes tumor growth and metastasis in hepatocellular carcinoma. Oncol Rep. 2019; 41 (6): 3347–54. DOI: 10.3892/or.2019.7119.
  45. Arvanitakis K., Mitroulis I., Germanidis G. Tumor-Associated Neutrophils in Hepatocellular Carcinoma Pathogenesis, Prognosis, and Therapy. Cancers (Basel). 2021; 13 (12): 2899. DOI: 10.3390/cancers13122899.
  46. Zahid K.R., Raza U., Tumbath S., Jiang L., Xu W., Huang X. Neutrophils: Musketeers against immunotherapy. Front Oncol. 2022; 12: 975981. DOI: 10.3389/fonc.2022.975981.
  47. Zhou S.L., Yin D., Hu Z.Q., Luo C.B., Zhou Z.J., Xin H.Y., Yang X.R., Shi Y.H., Wang Z., Huang X.W., Cao Y., Fan J., Zhou J. A Positive Feedback Loop Between Cancer Stem-Like Cells and Tumor-Associated Neutrophils Controls Hepatocellular Carcinoma Progression. Hepatology. 2019; 70 (4): 1214–30. DOI: 10.1002/hep.30630.
  48. Schoenberg M.B., Li X., Li X., Han Y., Hao J., Miksch R.C., Koch D., Börner N., Beger N.T., Bucher J.N., Schiergens T.S., Guba M.O., Werner J., Bazhin A.V. The predictive value of tumor infiltrating leukocytes in Hepatocellular Carcinoma: A systematic review and meta-analysis. Eur. J. Surg Oncol. 2021; 47 (10): 2561–70. DOI: 10.1016/j.ejso.2021.04.042.
  49. 49. Yang L.Y., Luo Q., Lu L., Zhu W.W., Sun H.T., Wei R., Lin Z.F., Wang X.Y., Wang C.Q., Lu M., Jia H.L., Chen J.H., Zhang J.B., Qin L.X. Increased neutrophil extracellular traps promote metastasis potential of hepatocellular carcinoma via provoking tumorous inflammatory response. J. Hematol Oncol. 2020; 13 (1): 3. DOI: 10.1186/s13045-019-0836-0.
  50. Zhu H.F., Feng J.K., Xiang Y.J., Wang K., Zhou L.P., Liu Z.H., Cheng Y.Q., Shi J., Guo W.X., Cheng S.Q. Combination of alpha-fetoprotein and neutrophil-to-lymphocyte ratio to predict treatment response and survival outcomes of patients with unresectable hepatocellular carcinoma treated with immune checkpoint inhibitors. BMC Cancer. 2023; 23: 547 https://doi.org/10.1186/s12885-023-11003-0.
  51. Lin S., Hu S., Ran Y., Wu F. Neutrophil-to-lymphocyte ratio predicts prognosis of patients with hepatocellular carcinoma: a systematic review and meta-analysis. Transl Cancer Res. 2021; 10 (4): 1667–78. DOI: 10.21037/tcr-20-3237.
  52. Bai J., Liang P., Li Q., Feng R., Liu J. Cancer Immunotherapy – Immune Checkpoint Inhibitors in Hepatocellular Carcinoma. Recent Pat Anticancer Drug Discov. 2021; 16 (2): 239–48. DOI: 10.2174/1574892816666210212145107.
  53. Leone P., Solimando A.G., Fasano R., Argentiero A., Malerba E., Buonavoglia A., Lupo L.G., De Re V., Silvestris N., Racanelli V. The Evolving Role of Immune Checkpoint Inhibitors in Hepatocellular Carcinoma Treatment. Vaccines (Basel). 2021; 9 (5): 532. DOI: 10.3390/vaccines9050532.
  54. Jácome A.A., Castro A.C.G., Vasconcelos J.P.S., Silva M.H.C.R., Lessa M.A.O., Moraes E.D., Andrade A.C., Lima F.M.T., Farias J.P.F., Gil R.A., Prolla G., Garicochea B. Efficacy and Safety Associated With Immune Checkpoint Inhibitors in Unresectable Hepatocellular Carcinoma: A Meta-analysis. JAMA Netw Open. 2021; 4 (12): e2136128. DOI: 10.1001/jamanetworkopen.2021.36128
  55. Rao Q., Li M., Xu W., Pang K., Guo X., Wang D., Liu J., Guo W., Zhang Z. Clinical benefits of PD-1/PD-L1 inhibitors in advanced hepatocellular carcinoma: a systematic review and meta-analysis. Hepatol Int. 2020; 14 (5): 765–75. DOI: 10.1007/s12072-020-10064-8.
  56. Makuku R., Khalili N., Razi S., Keshavarz-Fathi M., Rezaei N. Current and Future Perspectives of PD-1/PDL-1 Blockade in Cancer Immunotherapy. J. Immunol Res. 2021; 2021: 6661406. DOI: 10.1155/2021/6661406.
  57. Liu J., Chen Z., Li Y., Zhao W., Wu J., Zhang Z. PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Front Pharmacol. 2021; 12: 731798. DOI: 10.3389/fphar.2021.731798.
  58. Kudo M., Matilla A., Santoro A., Melero I., Gracián A.C., Acosta-Rivera M., Choo S.P., El-Khoueiry A.B., Kuromatsu R., El-Rayes B., Numata K., Itoh Y., Di Costanzo F., Crysler O., Reig M., Shen Y., Neely J., Tschaika M., Wisniewski T., Sangro B. CheckMate 040 cohort 5: A phase I/II study of nivolumab in patients with advanced hepatocellular carcinoma and Child-Pugh B cirrhosis. J. Hepatol. 2021; 75 (3): 600–9. DOI: 10.1016/j.jhep.2021.04.047.
  59. Yau T., Park J.W., Finn R.S., Cheng A.L., Mathurin P., Edeline J., Kudo M., Harding J.J., Merle P., Rosmorduc O., Wyrwicz L., Schott E., Choo S.P., Kelley R.K., Sieghart W., Assenat E., Zaucha R., Furuse J., Abou-Alfa G.K., El-Khoueiry A.B., Melero I., Begic D., Chen G., Neely J., Wisniewski T., Tschaika M., Sangro B. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022; 23 (1): 77–90. DOI: 10.1016/S1470-2045(21)00604-5.
  60. Finn R.S., Ryoo B.Y., Merle P., Kudo M., Bouattour M., Lim H.Y., Breder V., Edeline J., Chao Y., Ogasawara S., Yau T., Garrido M., Chan S.L., Knox J., Daniele B., Ebbinghaus S.W., Chen E., Siegel A.B., Zhu A.X., Cheng A.L. KEYNOTE-240 investigators. Pembrolizumab As Second-Line Therapy in Patients With Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020; 38 (3): 193–202. DOI: 10.1200/JCO.19.01307
  61. Desai J., Deva S., Lee J.S., Lin C.C., Yen C.J., Chao Y., Keam B., Jameson M., Hou M.M., Kang Y.K., Markman B., Lu C.H., Rau K.M., Lee K.H., Horvath L., Friedlander M., Hill A., Sandhu S., Barlow P., Wu C.Y., Zhang Y., Liang L., Wu J., Paton V., Millward M. Phase IA/IB study of single-agent tislelizumab, an investigational anti-PD-1 antibody, in solid tumors. J. Immunother Cancer. 2020; 8 (1): e000453. DOI: 10.1136/jitc-2019-000453.
  62. Qin S., Finn R.S., Kudo M., Meyer T., Vogel A., Ducreux M., Macarulla T.M., Tomasello G., Boisserie F., Hou J., Li X., Song J., Zhu A.X. RATIONALE 301 study: tislelizumab versus sorafenib as first-line treatment for unresectable hepatocellular carcinoma. Future Oncol. 2019; 15 (16): 1811–22. DOI: 10.2217/fon-2019-0097.
  63. Qin S., Ren Z., Meng Z., Chen Z., Chai X., Xiong J., Bai Y., Yang L., Zhu H., Fang W., Lin X., Chen X., Li E., Wang L., Chen C., Zou J. Camrelizumab in patients with previously treated advanced hepatocellular carcinoma: a multicentre, open-label, parallel-group, randomised, phase 2 trial. Lancet Oncol. 2020; 21 (4): 571–80. DOI: 10.1016/S1470-2045(20)30011-5.
  64. Kudo M. Scientific Rationale for Combination Immunotherapy of Hepatocellular Carcinoma with Anti-PD-1/PD-L1 and Anti-CTLA-4 Antibodies. Liver Cancer. 2019; 8 (6): 413–26. DOI: 10.1159/000503254.
  65. Agdashian D., ElGindi M., Xie C., Sandhu M., Pratt D., Kleiner D.E., Figg W.D., Rytlewski J.A., Sanders C., Yusko E.C., Wood B., Venzon D., Brar G., Duffy A.G., Greten T.F., Korangy F. The effect of anti-CTLA4 treatment on peripheral and intra-tumoral T-cells in patients with hepatocellular carcinoma. Cancer Immunol Immunother. 2019; 68 (4): 599–608. DOI: 10.1007/s00262-019-02299-8.
  66. Cheng H., Sun G., Chen H., Li Y., Han Z., Li Y., Zhang P., Yang L., Li Y. Trends in the treatment of advanced hepatocellular carcinoma: immune checkpoint blockade immunotherapy and related combination therapies. Am. J. Cancer Res. 2019; 9 (8): 1536–45.
  67. Ganjalikhani Hakemi M., Jafarinia M., Azizi M., Rezaeepoor M., Isayev O., Bazhin A.V. The Role of TIM-3 in Hepatocellular Carcinoma: A Promising Target for Immunotherapy? Front Oncol. 2020; 10: 601661. DOI: 10.3389/fonc.2020.601661.
  68. Hu S., Liu X., Li T., Li Z., Hu F. LAG3 (CD223) and autoimmunity: Emerging evidence. J. Autoimmun. 2020; 112: 102504. DOI: 10.1016/j.jaut.2020.102504.
  69. Yau T., Zagonel V., Santoro A., Acosta-Rivera M., Choo S.P., Matilla A., He A.R., Cubillo Gracian A., El-Khoueiry A.B., Sangro B., Eldawy T.E., Bruix J., Frassineti G.L., Vaccaro G.M., Tschaika M., Scheffold C., Koopmans P., Neely J., Piscaglia F. Nivolumab Plus Cabozantinib With or Without Ipilimumab for Advanced Hepatocellular Carcinoma: Results From Cohort 6 of the CheckMate 040 Trial. J. Clin. Oncol. 2023; 41 (9): 1747–57. DOI: 10.1200/JCO.22.00972.
  70. Abou-Alfa G.K., Chan S.L., Kudo M., Lau G., Kelley R.K., Furuse J., Sukeepaisarnjaroen W., Kang Y.-K., Dao T.V., De Toni E.N., Enrico N. De Toni, Rimassa L., Breder V.V., Vasilyev A., Heurgue A., Tam V., Mody K., Thungappa S.C., He P., Negro A., Sangro B. Phase 3 randomized, open-label, multicenter study of tremelimumab (T) and durvalumab (D) as first-line therapy in patients (pts) with unresectable hepatocellular carcinoma (uHCC): HIMALAYA. J. Clin. Oncol. 2022; 40 (S4): 379. DOI: 10.1200/JCO.2022.40.4_suppl.379.
  71. Tamura R., Tanaka T., Akasaki Y., Murayama Y., Yoshida K., Sasaki H. The role of vascular endothelial growth factor in the hypoxic and immunosuppressive tumor microenvironment: perspectives for therapeutic implications. Med Oncol. 2019; 37 (1): 2. DOI: 10.1007/s12032-019-1329-2.
  72. Cheng A.L., Qin S., Ikeda M., Galle P.R., Ducreux M., Kim T.Y., Lim H.Y., Kudo M., Breder V., Merle P., Kaseb A.O., Li D., Verret W., Ma N., Nicholas A., Wang Y., Li L., Zhu A.X., Finn R.S. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022; 76 (4): 862–73. DOI: 10.1016/j.jhep.2021.11.030.
  73. Ren Z., Xu J., Bai Y., Xu A., Cang S., Du C., Li Q., Lu Y., Chen Y., Guo Y., Chen Z., Liu B., Jia W., Wu J., Wang J., Shao G., Zhang B., Shan Y., Meng Z., Wu J., Gu S., Yang W., Liu C., Shi X., Gao Z., Yin T., Cui J., Huang M., Xing B., Mao Y., Teng G., Qin Y., Wang J., Xia F., Yin G., Yang Y., Chen M., Wang Y., Zhou H., Fan J. ORIENT-32 study group. Sintilimab plus a bevacizumab biosimilar (IBI305) versus sorafenib in unresectable hepatocellular carcinoma (ORIENT-32): a randomised, open-label, phase 2-3 study. Lancet Oncol. 2021; 22 (7): 977–90. DOI: 10.1016/S1470-2045(21)00252-7.
  74. Ju S., Zhou C., Yang C., Wang C., Liu J., Wang Y., Huang S., Li T., Chen Y., Bai Y., Yao W., Xiong B. Apatinib Plus Camrelizumab With /Without Chemoembolization for Hepatocellular Carcinoma: A Real-World Experience of a Single Center. Front Oncol. 2022; 11: 835889. DOI: 10.3389/fonc.2021.835889.
  75. Finn R.S., Ikeda M., Zhu A.X., Sung M.W., Baron A.D., Kudo M., Okusaka T., Kobayashi M., Kumada H., Kaneko S., Pracht M., Mamontov K., Meyer T., Kubota T., Dutcus C.E., Saito K., Siegel A.B., Dubrovsky L., Mody K., Llovet J.M. Phase Ib Study of Lenvatinib Plus Pembrolizumab in Patients With Unresectable Hepatocellular Carcinoma. J. Clin Oncol. 2020; 38 (26): 2960–70. DOI: 10.1200/JCO.20.00808.
  76. Li J., Xuan S., Dong P., Xiang Z., Gao C., Li M., Huang L., Wu J. Immunotherapy of hepatocellular carcinoma: recent progress and new strategy. Front Immunol. 2023; 14: 1192506. DOI: 10.3389/fimmu.2023.1192506.